
MATLAB®
Graphics

R2018a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Graphics
© COPYRIGHT 1984–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2006 Online only New for MATLAB® 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB® 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB® 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB® 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB® 7.6 (Release 2008a)

This publication was previously part of the
Using MATLAB® Graphics User Guide.

October 2008 Online only Revised for MATLAB® 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB® 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB® 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB® 7.10 (Release 2010a)
September 2010 Online only Revised for MATLAB® 7.11 (Release 2010b)
April 2011 Online only Revised for MATLAB® 7.12 (Release 2011a)
September 2011 Online only Revised for MATLAB® 7.13 (Release 2011b)
March 2012 Online only Revised for MATLAB® 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 9.2 (Release 2017a)
September 2017 Online only Revised for Version 9.3 (Release 2017b)
March 2018 Online only Revised for Version 9.4 (Release 2018a)

Plots and Plotting Tools
1

Types of MATLAB Plots . 1-2

Create Graph Using Plots Tab . 1-5

Customize Graph Using Plot Tools . 1-7
Open Plot Tools . 1-7
Customize Objects in Graph . 1-8
Control Visibility of Objects in Graph 1-8
Add Annotations to Graph . 1-8
Close Plot Tools . 1-9

Create Subplots Using Plot Tools . 1-10
Create Simple Line Plot and Open Plot Tools 1-10
Create Upper and Lower Subplots . 1-10
Add Data to Lower Subplot . 1-11
Add New Plot Without Overwriting Existing Plot 1-12

Basic Plotting Commands
2

Create 2-D Graph and Customize Lines 2-2
Create 2-D Line Graph . 2-2
Create Graph in New Figure Window 2-3
Plot Multiple Lines . 2-4
Colors, Line Styles, and Markers . 2-5
Specify Line Style . 2-6
Specify Different Line Styles for Multiple Lines 2-7
Specify Line Style and Color . 2-8
Specify Line Style, Color, and Markers 2-9

v

Contents

Plot Only Data Points . 2-10

Add Title, Axis Labels, and Legend to Graph 2-13

Specify Axis Limits . 2-19

Specify Axis Tick Values and Labels . 2-28

Add Grid Lines and Edit Placement . 2-38

Combine Multiple Plots . 2-47

Create Chart with Two y-Axes . 2-54

Modify Properties of Charts with Two y-Axes 2-63
Change Axes Properties . 2-63
Change Ruler Properties . 2-65
Specify Colors Using Default Color Order 2-67

Plot Imaginary and Complex Data . 2-70

Create Heatmap from Tabular Data . 2-74

Data Exploration Tools
3

Ways to Explore Graphical Data . 3-2
Introduction . 3-2
Types of Tools . 3-2

Display Data Values Interactively . 3-4
What Is a Data Cursor? . 3-4
Enabling Data Cursor Mode . 3-5
Display Style — Datatip or Cursor Window 3-12
Selection Style — Select Data Points or Interpolate Points on

Graph . 3-13
Exporting Data Value to Workspace Variable 3-13

Zooming in Graphs . 3-15
Zooming in 2-D and 3-D . 3-15

vi Contents

Zooming in 2-D Views . 3-15
Zooming in 3-D Views . 3-16

Panning — Shifting Your View of the Graph 3-17

Rotate in 3-D . 3-18
Enabling 3-D Rotation . 3-18
Selecting Predefined Views . 3-18
Rotation Style for Complex Graphs . 3-19
Undo/Redo — Eliminating Mistakes 3-21

Annotating Graphs
4

Add Text to Specific Points on Graph . 4-2
Add Text to Three Data Points on Graph 4-2
Determine Minimum and Maximum Points and Add Text 4-5

Include Variable Values in Graph Text . 4-9
Include Variable Value in Axis Label . 4-9
Include Loop Variable Value in Graph Title 4-10

Text with Mathematical Expression Using LaTeX 4-12
Add Text with Integral Expression to Graph 4-12
Add Text with Summation Symbol to Graph 4-14

Greek Letters and Special Characters in Graph Text 4-17
Include Greek Letters in Graph Text 4-17
Include Superscripts and Annotations in Graph Text 4-18
TeX Markup Options . 4-20

Add Annotations to Graph Interactively 4-24
Add Annotations . 4-24
Pin Annotations to Points in Graph . 4-25

Add Text to Graph Interactively . 4-27
Add Title and Axis Labels . 4-27
Add Legend . 4-29
Add Annotations to Graph . 4-31

vii

Align Objects in Graph Using Alignment Tools 4-33

Coloring Graphs
5

Creating Colorbars . 5-2

Change Color Scheme Using a Colormap 5-10

How Surface Plot Data Relates to a Colormap 5-16
Relationship Between the Surface and the Colormap 5-16
Change the Direction or Pattern of Colors 5-17

How Image Data Relates to a Colormap 5-23

How Patch Data Relates to a Colormap 5-32
Relationship of the Colormap to x-, y-, and z-Coordinate

Arrays . 5-32
Relationship of the Colormap to Face-Vertex Data 5-36

Control Colormap Limits . 5-42

Differences Between Colormaps and Truecolor 5-48
Differences in Workflow . 5-48
Differences in Visual Presentation . 5-50

Creating Specialized Plots
6

Types of Bar Graphs . 6-3

Modify Baseline of Bar Graph . 6-10

Overlay Bar Graphs . 6-13

Combine Line and Bar Charts Using Two y-Axes 6-17

viii Contents

Color 3-D Bars by Height . 6-21

Compare Data Sets Using Overlayed Area Graphs 6-24

Offset Pie Slice with Greatest Contribution 6-29

Add Legend to Pie Chart . 6-31

Label Pie Chart With Text and Percentages 6-34
Create Pie Chart . 6-34
Store Precalculated Percent Values . 6-35
Combine Percent Values and Additional Text 6-36
Determine Horizontal Distance to Move Each Label 6-38
Position New Label . 6-39

Data Cursors with Histograms . 6-42

Color Analysis with Bivariate Histogram 6-44

Control Categorical Histogram Display 6-51

Replace Discouraged Instances of hist and histc 6-59
Old Histogram Functions (hist, histc) 6-59
Recommended Histogram Functions 6-59
Differences Requiring Code Updates 6-60

Combine Line and Stem Plots . 6-70

Overlay Stairstep Plot and Line Plot . 6-73

Combine Contour Plot and Quiver Plot 6-76

Projectile Path Over Time . 6-78

Label Contour Plot Levels . 6-80

Change Fill Colors for Contour Plot . 6-82

Highlight Specific Contour Levels . 6-84

Create Word Cloud from String Arrays 6-87

ix

Animation Techniques . 6-90
Updating the Screen . 6-90
Optimizing Performance . 6-90

Trace Marker Along Line . 6-92

Move Group of Objects Along Line . 6-96

Animate Graphics Object . 6-100

Line Animations . 6-104

Record Animation for Playback . 6-107
Record and Play Back Movie . 6-107
Capture Entire Figure for Movie . 6-108

Customize Polar Axes Grid Lines and Appearance 6-111

Compass Labels on Polar Axes . 6-120

Create Line Plot with Markers . 6-123
Add Markers to Line Plot . 6-123
Specify Marker Size and Color . 6-125
Control Placement of Markers Along Line 6-127
Display Markers at Maximum and Minimum Data Points . . . 6-128
Revert to Default Marker Locations 6-129
Supported Marker Symbols . 6-131

Geographic Bubble Charts Overview 6-133
Geographic Bubble Chart Basemaps 6-135
Pan and Zoom Geographic Bubble Charts 6-138
Data Tips on Geographic Bubble Charts 6-140
Geographic Bubble Chart Legends 6-141

Deploy Geographic Bubble Charts . 6-145

Use Geographic Bubble Chart Properties 6-146
Control Bubble Size . 6-146
Control Bubble Color . 6-150
Specify Map Limits . 6-151

Access Basemaps in MATLAB . 6-157

x Contents

Troubleshoot Geographic Bubble Chart Basemap
Connection . 6-159

Create Geographic Bubble Chart from Tabular Data 6-161

Displaying Bit-Mapped Images
7

Working with Images in MATLAB Graphics 7-2
What Is Image Data? . 7-2
Supported Image Formats . 7-3

Image Types . 7-5
Indexed Images . 7-5
Intensity Images . 7-7
RGB (Truecolor) Images . 7-8

8-Bit and 16-Bit Images . 7-10
Indexed Images . 7-10
Intensity Images . 7-11
RGB Images . 7-11
Mathematical Operations Support for uint8 and uint16 7-12
Other 8-Bit and 16-Bit Array Support 7-12
Converting an 8-Bit RGB Image to Grayscale 7-13
Summary of Image Types and Numeric Classes 7-17

Read, Write, and Query Image Files . 7-18
Working with Image Formats . 7-18
Reading a Graphics Image . 7-19
Writing a Graphics Image . 7-19
Subsetting a Graphics Image (Cropping) 7-20
Obtaining Information About Graphics Files 7-21

Displaying Graphics Images . 7-22
Image Types and Display Methods . 7-22
Controlling Aspect Ratio and Display Size 7-24

The Image Object and Its Properties . 7-27
Image CData . 7-27
Image CDataMapping . 7-27

xi

XData and YData . 7-28
Add Text to Image Data . 7-31
Additional Techniques for Fast Image Updating 7-33

Printing Images . 7-35

Convert Image Graphic or Data Type . 7-36

Printing and Saving
8

Print Figure from File Menu . 8-2
Simple Printout . 8-2
Preserve Background Color and Tick Values 8-2
Figure Size and Placement . 8-3
Line Width and Font Size . 8-5

Copy Figure to Clipboard from Edit Menu 8-7
Copy Figure to Clipboard . 8-7
Specify Format, Background Color, and Size Options 8-9

Customize Figure Interactively Before Saving 8-11
Set Figure Size . 8-11
Set Figure Background Color . 8-13
Set Figure Font Size and Line Width 8-14
Save Figure to File . 8-16
Save Figure Settings for Future Use 8-17
Apply Settings to Another Figure . 8-17
Restore Figure to Original Settings . 8-18

Save Figure to Open in Another Application 8-19
Choose File Format . 8-19
Save Figure for Document or Presentation 8-19
Save Figure for Editing in Another Application 8-20
Customize Figure Before Saving . 8-20
Include Figure in Microsoft Application or LaTeX

Document . 8-21
File Format Options . 8-21

xii Contents

Save Figure Preserving Background Color 8-24
Retain Current Background Color . 8-24
Change Background Color . 8-25

Save Figure at Specific Size and Resolution 8-27
Use Screen Size and Resolution . 8-27
Expand Figure to Fill Page . 8-28
Use Specific Dimensions . 8-29
Preserve Axis Limits and Tick Values 8-31

Save Figure to Reopen in MATLAB Later 8-33
Save Figure to FIG-File . 8-33
Generate Code to Recreate Figure . 8-35

Save Axes Without Saving UIControls 8-36
Create Figure with UIControls . 8-36
Save Axes Without Saving UIControls 8-37
Copy Axes to New Figure and Save . 8-38

Save Figure with Minimal White Space 8-40
Create Plot to Save . 8-40
Expand Axes to Fill Figure . 8-41
Specify Figure Size and Page Size . 8-43
Save Figure to File Format . 8-43

Axes Active Position
9

Control Axes Layout . 9-2
Axes Position-Related Properties . 9-2
Position and Margin Boundaries . 9-2
Controlling Automatic Resize Behavior 9-4
Stretch-to-Fill Behavior . 9-5

xiii

Controlling Graphics Output
10

Control Graph Display . 10-2
What You Can Control . 10-2
Targeting Specific Figures and Axes 10-2

Prepare Figures and Axes for Graphs 10-5
Behavior of MATLAB Plotting Functions 10-5
How the NextPlot Properties Control Behavior 10-5
Control Behavior of User-Written Plotting Functions 10-7

Use newplot to Control Plotting . 10-9

Responding to Hold State . 10-12

Prevent Access to Figures and Axes . 10-14
Why Prevent Access . 10-14
How to Prevent Access . 10-14

Default Values
11

Default Property Values . 11-2
Predefined Values for Properties . 11-2
Specify Default Values . 11-2
Where in Hierarchy to Define Default 11-3
List Default Values . 11-3
Set Properties to the Current Default 11-4
Remove Default Values . 11-4
Set Properties to Factory-Defined Values 11-4
List Factory-Defined Property Values 11-4
Reserved Words . 11-5

Default Values for Automatically Calculated Properties 11-6
What Are Automatically Calculated Properties 11-6
Default Values for Automatically Calculated Properties 11-6

How MATLAB Finds Default Values . 11-8

xiv Contents

Factory-Defined Property Values . 11-9

Define Default Line Styles . 11-10

Multilevel Default Values . 11-12

Graphics Object Callbacks
12

Callbacks — Programmed Response to User Action 12-2
What Are Callbacks? . 12-2
Window Callbacks . 12-2

Callback Definition . 12-4
Ways to Specify Callbacks . 12-4
Callback Function Syntax . 12-4
Related Information . 12-5
Define a Callback as a Default . 12-6

Button Down Callback Function . 12-7
When to Use a Button Down Callback 12-7
How to Define a Button Down Callback 12-7

Define a Context Menu . 12-9
When to Use a Context Menu . 12-9
How to Define a Context Menu . 12-9

Define an Object Creation Callback . 12-11
Related Information . 12-12

Define an Object Deletion Callback . 12-13

Capturing Mouse Clicks . 12-14
Properties That Control Response to Mouse Clicks 12-14
Combinations of PickablePart/HitTest Values 12-15
Passing Mouse Click Up the Hierarchy 12-15

Pass Mouse Click to Group Parent . 12-18
Objective and Design . 12-18
Object Hierarchy and Key Properties 12-18

xv

MATLAB Code . 12-19

Pass Mouse Click to Obscured Object 12-21

Graphics Objects
13

Graphics Objects . 13-2
MATLAB Graphics Objects . 13-2
Graphs Are Composed of Specific Objects 13-2
Organization of Graphics Objects . 13-2

Features Controlled by Graphics Objects 13-7
Purpose of Graphics Objects . 13-7
Figures . 13-7
Axes . 13-8
Objects That Represent Data . 13-9
Group Objects . 13-10
Annotation Objects . 13-11

Group Objects
14

Object Groups . 14-2

Create Object Groups . 14-3
Parent Specification . 14-4
Visible and Selected Properties of Group Children 14-4

Transforms Supported by hgtransform 14-5
Transforming Objects . 14-5
Rotation . 14-5
Translation . 14-6
Scaling . 14-6
The Default Transform . 14-7
Disallowed Transforms: Perspective 14-7
Disallowed Transforms: Shear . 14-7

xvi Contents

Absolute vs. Relative Transforms . 14-8
Combining Transforms into One Matrix 14-8
Undoing Transform Operations . 14-9

Rotate About an Arbitrary Axis . 14-10
Translate to Origin Before Rotating 14-10
Rotate Surface . 14-10

Nest Transforms for Complex Movements 14-14

Control Legend Content
15

Add Legend to Graph . 15-2

Create Interactive Legends Using Callbacks 15-11
Toggle Chart Visibility . 15-11
Toggle Chart Line Width . 15-12

Working with Graphics Objects
16

Graphics Object Handles . 16-2
What You Can Do with Handles . 16-2
What You Cannot Do with Handles . 16-3

Preallocate Arrays of Graphics Objects 16-4

Test for Valid Handle . 16-5

Handles in Logical Expressions . 16-6
If Handle Is Valid . 16-6
If Result Is Empty . 16-6
If Handles Are Equal . 16-7

Graphics Arrays . 16-8

xvii

Object Identification
17

Special Object Identifiers . 17-2
Getting Handles to Special Objects . 17-2
The Current Figure, Axes, and Object 17-2
Callback Object and Callback Figure 17-4

Find Objects . 17-5
Find Objects with Specific Property Values 17-5
Find Text by String Property . 17-5
Use Regular Expressions with findobj 17-7
Limit Scope of Search . 17-9

Copy Objects . 17-11
Copying Objects with copyobj . 17-11
Copy Single Object to Multiple Destinations. 17-11
Copying Multiple Objects . 17-12

Delete Graphics Objects . 17-14
How to Delete Graphics Objects . 17-14
Handles to Deleted Objects . 17-15

Optimize Performance of Graphics Programs
18

Finding Code Bottlenecks . 18-2

What Affects Code Execution Speed . 18-4
Potential Bottlenecks . 18-4
How to Improve Performance . 18-4

Judicious Object Creation . 18-6
Object Overhead . 18-6
Do Not Create Unnecessary Objects 18-6
Use NaNs to Simulate Multiple Lines 18-7
Modify Data Instead of Creating New Objects 18-7

xviii Contents

Avoid Repeated Searches for Objects . 18-8
Limit Scope of Search . 18-8

Screen Updates . 18-10
MATLAB Graphics System . 18-10
Managing Updates . 18-11

Getting and Setting Properties . 18-12
Automatically Calculated Properties 18-12
Inefficient Cycles of Sets and Gets 18-13
Changing Text Extent to Rotate Labels 18-14

Avoid Updating Static Data . 18-15
Segmenting Data to Reduce Update Times 18-15

Transforming Objects Efficiently . 18-17

Use Low-Level Functions for Speed . 18-18

System Requirements for Graphics . 18-19
Minimum System Requirements . 18-19
Recommended System Requirements 18-19
Upgrade Your Graphics Drivers . 18-20
Graphics Features with OpenGL Requirements 18-20

Resolving Low-Level Graphics Issues 18-22
Upgrade Your Graphics Hardware Drivers 18-22
Choose OpenGL Implementation for Your System 18-22
Fix Out-of-Memory Issues . 18-24
Contact Technical Support . 18-24

set and get
19

Access Property Values . 19-2
Object Properties and Dot Notation 19-2
Graphics Object Variables Are Handles 19-4
Listing Object Properties . 19-6
Modify Properties with set and get . 19-6
Multi Object/Property Operations . 19-7

xix

Using Axes Properties
20

Control Ratio of Axis Lengths and Data Unit Lengths 20-2
Plot Box Aspect Ratio . 20-2
Data Aspect Ratio . 20-5
Revert Back to Default Ratios . 20-8

Create Chart with Multiple x-Axes and y-Axes 20-10

Display Text Outside Axes . 20-15

Line Styles Used for Plotting — LineStyleOrder 20-18

xx Contents

Plots and Plotting Tools

• “Types of MATLAB Plots” on page 1-2
• “Create Graph Using Plots Tab” on page 1-5
• “Customize Graph Using Plot Tools” on page 1-7
• “Create Subplots Using Plot Tools” on page 1-10

1

Types of MATLAB Plots
There are various functions that you can use to plot data in MATLAB. This table classifies
and illustrates the common graphics functions.

“Line
Plots”

“Pie
Chart
s, Bar
Plots,
and
Histo
grams
”

“Discr
ete
Data
Plots”

“Polar
Plots”

“Cont
our
Plots”

“Vect
or
Fields
”

“Surface and
Mesh Plots”

“Volu
me
Visual
izatio
n”

“Anim
ation”

“Imag
es”

plot area stair
s

polar
plot

conto
ur

quive
r

surf mesh strea
mline

anima
tedli
ne

image

plot3 pie stem polar
histo
gram

conto
urf

quive
r3

surfc meshc strea
mslic
e

comet image
sc

semil
ogx

pie3 stem3 polar
scatt
er

conto
ur3

feath
er

surfl meshz strea
mpart
icles

comet
3

1 Plots and Plotting Tools

1-2

“Line
Plots”

“Pie
Chart
s, Bar
Plots,
and
Histo
grams
”

“Discr
ete
Data
Plots”

“Polar
Plots”

“Cont
our
Plots”

“Vect
or
Fields
”

“Surface and
Mesh Plots”

“Volu
me
Visual
izatio
n”

“Anim
ation”

“Imag
es”

semil
ogy

bar scatt
er

compa
ss

conto
ursli
ce

 ribbo
n

water
fall

strea
mribb
on

loglo
g

barh scatt
er3

ezpol
ar

fcont
our

 pcolo
r

fmesh strea
mtube

error
bar

bar3 spy fsurf conep
lot

fplot bar3h plotm
atrix

 fimpl
icit3

 slice

fplot
3

histo
gram

heatm
ap

 Types of MATLAB Plots

1-3

“Line
Plots”

“Pie
Chart
s, Bar
Plots,
and
Histo
grams
”

“Discr
ete
Data
Plots”

“Polar
Plots”

“Cont
our
Plots”

“Vect
or
Fields
”

“Surface and
Mesh Plots”

“Volu
me
Visual
izatio
n”

“Anim
ation”

“Imag
es”

fimpl
icit

histo
gram2

geobu
bble

 paret
o

wordc
loud

See Also

Related Examples
• “Create 2-D Graph and Customize Lines” on page 2-2
• “Create Graph Using Plots Tab” on page 1-5

External Websites
• MATLAB Plot Gallery

1 Plots and Plotting Tools

1-4

https://www.mathworks.com/discovery/gallery.html

Create Graph Using Plots Tab
This example shows how to create a 2-D line plot interactively using the Plots tab in the
MATLAB toolstrip. The Plots tab shows a gallery of supported plot types based on the
variables you select from your workspace.

1 In the Command Window, define x as a vector of 50 linearly spaced values between 1
and 10. Define y as the sine function.

x = linspace(1,10,50);
y = sin(x);

2 In the Workspace panel in the MATLAB desktop, select the variables to plot. Use Ctrl
+ click to select multiple variables.

3 Select the 2-D line plot from the gallery on the Plots tab. For additional plot types,
click the arrow at the end of the gallery.

MATLAB creates the plot and displays the plotting commands at the command line.

plot(x,y)

See Also
area | bar | histogram | pie | plot | scatter

 Create Graph Using Plots Tab

1-5

Related Examples
• “Customize Graph Using Plot Tools” on page 1-7

External Websites
• MATLAB Plot Gallery

1 Plots and Plotting Tools

1-6

https://www.mathworks.com/discovery/gallery.html

Customize Graph Using Plot Tools
To customize a graph interactively you can use the plot tools. The plot tools interface
consists of three different panels: the Property Editor, the Plot Browser, and the Figure
Palette. Use these panels to add different types of customizations to your graph.

Open Plot Tools

To open the plot tools, use the plottools command or click the Show Plot Tools icon
in the figure window. For example, define variables x and y in the Command Window,
create a line plot and open the plot tools.

x = linspace(1,10,25);
y = sin(x);
plot(x,y)
plottools

MATLAB creates a plot of y versus x and opens the plot tools.

 Customize Graph Using Plot Tools

1-7

Customize Objects in Graph
To customize objects in your graph, you can set their properties using the Property Editor.
For example, click the axes to display a subset of common axes properties in the Property
Editor. Specify a title and an x-axis label by typing text in the empty fields.

Click other objects in the graph to display and edit a subset of their common properties in
the Property Editor. Access and edit more object properties by clicking More Properties
to open the Property Inspector.

Note You cannot use the Property Editor to access properties of objects that you cannot
click, such as a light or a uicontextmenu. You must store the object handles and use the
inspect command.

Control Visibility of Objects in Graph
To control the visibility of objects in the graph, you can use the Plot Browser. The Plot
Browser lists all the axes and plots in the figure. The check box next to each object
controls the object's visibility.

• Hide an object without deleting it by clearing its box in the Plot Browser.
• Delete an object by right-clicking it and selecting Delete.

Add Annotations to Graph
To add annotations to the graph, such as arrows and text, you can use the Annotations
panel in the Figure Palette.

1 Plots and Plotting Tools

1-8

Close Plot Tools

To remove the plot tools from the figure, you can use the Hide Plot Tools icon , or type
plottools('off') in the Command Window.

Use the View menu to show or hide specific plot tools panels. If you change the layout of
the plot tools, then the layout persists the next time you open the plot tools.

See Also
Property Inspector | annotation | figurepalette | plot | plotbrowser |
plottools | propertyeditor

Related Examples
• “Create Subplots Using Plot Tools” on page 1-10

 See Also

1-9

Create Subplots Using Plot Tools
This example shows how to create a figure with multiple graphs interactively and add
different types of plots to each graph using the plot tools.

Create Simple Line Plot and Open Plot Tools
Define variables x and y in the Command Window and create a line plot using the plot
function. Open the plot tools using the plottools command or by clicking the Show Plot

Tools icon in the figure window.

x = linspace(1,10,25);
y = sin(x);
plot(x,y)
plottools

MATLAB creates a plot of y versus x and opens the plot tools.

Create Upper and Lower Subplots
Create upper and lower subplots using the Figure Palette panel in the plot tools. Choose a
subplot layout for two horizontal graphs using the 2-D grid icon .

1 Plots and Plotting Tools

1-10

Add Data to Lower Subplot
Create a scatter plot of y versus x in the lower subplot using the Figure Palette.

1 Click the lower subplot axes to make it the current axes.
2 Select x and y in the Variables panel of the Figure Palette. Select multiple variables

using Ctrl + click.
3 Right-click one of the variables to display a context menu containing a list of possible

plot types based on the variables selected.

 Create Subplots Using Plot Tools

1-11

4 Select scatter(x,y) from the menu. (The Plot Catalog menu option lists
additional plot types.)

MATLAB creates a scatter plot in the lower subplot and displays the commands used to
create the plot in the Command Window.

scatter(x,y)

Note Adding a plot to an axes using the Variables panel overwrites existing plots in that
axes.

Add New Plot Without Overwriting Existing Plot
Add a bar graph of cos(x) versus x to the upper subplot without erasing the existing line
plot. Use the Add Data option in the Plot Browser.

1 Open a dialog box by clicking the upper subplot, and then click the Add Data button
at the bottom of the Plot Browser.

1 Plots and Plotting Tools

1-12

2 Use the drop-down menu to select a bar graph as the plot type.
3 Specify the variables to plot by setting the X Data Source and Y Data Source fields.

Use the drop-down menu to specify X Data Source as the variable x. Since cos(x)
is not defined as a variable, type this expression into the empty field next to Y Data
Source.

4 Click OK. MATLAB adds a bar graph to the upper subplot.

 Create Subplots Using Plot Tools

1-13

See Also
bar | figurepalette | plot | plottools | propertyeditor | scatter | subplot

Related Examples
• “Customize Graph Using Plot Tools” on page 1-7

1 Plots and Plotting Tools

1-14

Basic Plotting Commands

• “Create 2-D Graph and Customize Lines” on page 2-2
• “Add Title, Axis Labels, and Legend to Graph” on page 2-13
• “Specify Axis Limits” on page 2-19
• “Specify Axis Tick Values and Labels” on page 2-28
• “Add Grid Lines and Edit Placement” on page 2-38
• “Combine Multiple Plots” on page 2-47
• “Create Chart with Two y-Axes” on page 2-54
• “Modify Properties of Charts with Two y-Axes” on page 2-63
• “Plot Imaginary and Complex Data” on page 2-70
• “Create Heatmap from Tabular Data” on page 2-74

2

Create 2-D Graph and Customize Lines
In this section...
“Create 2-D Line Graph” on page 2-2
“Create Graph in New Figure Window” on page 2-3
“Plot Multiple Lines” on page 2-4
“Colors, Line Styles, and Markers” on page 2-5
“Specify Line Style” on page 2-6
“Specify Different Line Styles for Multiple Lines” on page 2-7
“Specify Line Style and Color” on page 2-8
“Specify Line Style, Color, and Markers” on page 2-9
“Plot Only Data Points” on page 2-10

Create 2-D Line Graph
This example shows how to create a simple line graph. Use the linspace function to
define x as a vector of 100 linearly spaced values between 0 and .

x = linspace(0,2*pi,100);

Define y as the sine function evaluated at the values in x.

y = sin(x);

Plot y versus the corresponding values in x.

figure
plot(x,y)

2 Basic Plotting Commands

2-2

Create Graph in New Figure Window
This example shows how to create a graph in a new figure window, instead of plotting into
the current figure.

Define x and y.

x = linspace(0,2*pi,25);
y = sin(x);

Create a stairstep plot of y versus x. Open a new figure window using the figure
command. If you do not open a new figure window, then by default, MATLAB® clears
existing graphs and plots into the current figure.

 Create 2-D Graph and Customize Lines

2-3

figure % new figure window
stairs(x,y)

Plot Multiple Lines
This example shows how to plot more than one line by passing multiple x,y pairs to the
plot function.

Define y1 and y2 as sine waves with a phase shift.

x = linspace(0,2*pi,100);
y1 = sin(x);
y2 = sin(x-pi/4);

2 Basic Plotting Commands

2-4

Plot the lines.

figure
plot(x,y1,x,y2)

plot cycles through a predefined list of line colors.

Colors, Line Styles, and Markers
To change the line color, line style, and marker type, add a line specification input
argument to the x,y pair. For example, 'g:*' plots a green dotted line with star
markers. You can omit one or more options from the line specification, such as 'g:' for a

 Create 2-D Graph and Customize Lines

2-5

green dotted line with no markers. To change just the line style, specify only a line style
option, such as '--' for a dashed line.

For more information, see the LineSpec input argument for plot.

Specify Line Style
This example shows how to create a plot using a dashed line. Add the optional line
specification, '--', to the x,y pair.

x = linspace(0,2*pi,100);
y = sin(x);

figure
plot(x,y,'--')

2 Basic Plotting Commands

2-6

Specify Different Line Styles for Multiple Lines
This example shows how to plot two sine waves with different line styles by adding a line
specification to each x,y pair.

Plot the first sine wave with a dashed line using '--'. Plot the second sine wave with a
dotted line using ':'.

x = linspace(0,2*pi,100);
y1 = sin(x);
y2 = sin(x-pi/4);

 Create 2-D Graph and Customize Lines

2-7

figure
plot(x,y1,'--',x,y2,':')

Specify Line Style and Color
This example shows how to specify the line styles and line colors for a plot.

Plot a sine wave with a green dashed line using '--g'. Plot a second sine wave with a red
dotted line using ':r'. The elements of the line specification can appear in any order.

x = linspace(0,2*pi,100);
y1 = sin(x);
y2 = sin(x-pi/4);

2 Basic Plotting Commands

2-8

figure
plot(x,y1,'--g',x,y2,':r')

Specify Line Style, Color, and Markers
This example shows how to specify the line style, color, and markers for two sine waves. If
you specify a marker type, then plot adds a marker to each data point.

Define x as 25 linearly spaced values between 0 and . Plot the first sine wave with a
green dashed line and circle markers using '--go'. Plot the second sine wave with a red
dotted line and star markers using ':r*'.

 Create 2-D Graph and Customize Lines

2-9

x = linspace(0,2*pi,25);
y1 = sin(x);
y2 = sin(x-pi/4);

figure
plot(x,y1,'--go',x,y2,':r*')

Plot Only Data Points
This example shows how to plot only the data points by omitting the line style option from
the line specification.

Define the data x and y. Plot the data and display a star marker at each data point.

2 Basic Plotting Commands

2-10

x = linspace(0,2*pi,25);
y = sin(x);

figure
plot(x,y,'*')

See Also
contour | linspace | loglog | plot | plotyy | scatter | semilogx | semilogy |
stairs | stem

 See Also

2-11

Related Examples
• “Add Title, Axis Labels, and Legend to Graph” on page 2-13
• “Specify Axis Limits” on page 2-19
• “Specify Axis Tick Values and Labels” on page 2-28

External Websites
• MATLAB Plot Gallery

2 Basic Plotting Commands

2-12

https://www.mathworks.com/discovery/gallery.html

Add Title, Axis Labels, and Legend to Graph
This example shows how to add a title, axis labels and a legend to a graph using the
title, xlabel, ylabel and legend functions. By default, these functions add the text
to the current axes. The current axes is typically the last axes created or the last axes
clicked with the mouse.

Create Simple Line Plot

Define x as 100 linearly spaced values between and . Define y1 and y2 as sine
and cosine values of x. Create a line plot of both sets of data.

x = linspace(-2*pi,2*pi,100);
y1 = sin(x);
y2 = cos(x);

figure
plot(x,y1,x,y2)

 Add Title, Axis Labels, and Legend to Graph

2-13

Add Title

Add a title to the graph using the title function. To display Greek symbols in a title, use
TeX markup. Use the TeX markup, \pi, to display the Greek symbol .

title('Graph of Sine and Cosine Between -2\pi and 2\pi')

2 Basic Plotting Commands

2-14

Add Axis Labels

Add axis labels to the graph using the xlabel and ylabel functions.

xlabel('-2\pi < x < 2\pi') % x-axis label
ylabel('sine and cosine values') % y-axis label

 Add Title, Axis Labels, and Legend to Graph

2-15

Add Legend

Add a legend to the graph identifying each data set using the legend function. Specify
legend descriptions in the order that you plot the lines.

legend('y = sin(x)','y = cos(x)')

2 Basic Plotting Commands

2-16

Specify Legend Location

Specify the location of the legend on the graph by setting its location using one of the
eight cardinal or intercardinal directions. Display the legend at the bottom left corner of
the axes by specifying the location as 'southwest'.

legend('y = sin(x)','y = cos(x)','Location','southwest')

 Add Title, Axis Labels, and Legend to Graph

2-17

To display the legend outside the axes, append outside to any of the directions, for
example, 'southwestoutside'.

See Also
legend | linspace | title | xlabel | ylabel

Related Examples
• “Specify Axis Limits” on page 2-19
• “Specify Axis Tick Values and Labels” on page 2-28

2 Basic Plotting Commands

2-18

Specify Axis Limits
You can control where data appears in the axes by setting the x-axis, y-axis, and z-axis
limits. You also can change where the x-axis and y-axis lines appear (2-D plots only) or
reverse the direction of increasing values along each axis.

Change Axis Limits

Create a line plot. Specify the axis limits using the xlim and ylim functions. For 3-D
plots, use the zlim function. Pass the functions a two-element vector of the form [min
max].

x = linspace(-10,10,200);
y = sin(4*x)./exp(x);
plot(x,y)
xlim([0 10])
ylim([-0.4 0.8])

 Specify Axis Limits

2-19

Use Semiautomatic Axis Limits

Set the maximum x-axis limit to 0 and the minimum y-axis limit to -1. Let MATLAB choose
the other limits. For an automatically calculated minimum or maximum limit, use -inf or
inf, respectively.

[X,Y,Z] = peaks;
surf(X,Y,Z)
xlabel('x-axis')
ylabel('y-axis')
xlim([-inf 0])
ylim([-1 inf])

2 Basic Plotting Commands

2-20

Revert Back to Default Limits

Create a mesh plot and change the axis limits. Then revert back to the default limits.

[X,Y,Z] = peaks;
mesh(X,Y,Z)
xlim([-2 2])
ylim([-2 2])
zlim([-5 5])

 Specify Axis Limits

2-21

xlim auto
ylim auto
zlim auto

2 Basic Plotting Commands

2-22

Reverse Axis Direction

Control the direction of increasing values along the x-axis and y-axis by setting the XDir
and YDir properties of the Axes object. Set these properties to either 'reverse' or
'normal' (the default). Use the gca command to access the Axes object.

stem(1:10)
ax = gca;
ax.XDir = 'reverse';
ax.YDir = 'reverse';

 Specify Axis Limits

2-23

Display Axis Lines through Origin

By default, the x-axis and y-axis appear along the outer bounds of the axes. Change the
location of the axis lines so that they cross at the origin point (0,0) by setting the
XAxisLocation and YAxisLocation properties of the Axes object. Set
XAxisLocation to either 'top', 'bottom', or 'origin'. Set YAxisLocation to
either 'left', 'right', or 'origin'. These properties only apply to axes in a 2-D view.

x = linspace(-5,5);
y = sin(x);
plot(x,y)

ax = gca;

2 Basic Plotting Commands

2-24

ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';

Remove the axes box outline.

box off

 Specify Axis Limits

2-25

See Also
Functions
axis | grid | xlim | xticks | ylim | yticks | zlim | zticks

Properties
Axes

Related Examples
• “Specify Axis Tick Values and Labels” on page 2-28

2 Basic Plotting Commands

2-26

• “Add Grid Lines and Edit Placement” on page 2-38
• “Add Title, Axis Labels, and Legend to Graph” on page 2-13

 See Also

2-27

Specify Axis Tick Values and Labels
Customizing the tick values and labels along an axis can help highlight particular aspects
of your data. These examples show some common customizations, such as modifying the
tick value placement, changing the tick label text and formatting, and rotating the tick
labels.

Change Tick Value Locations and Labels

Create x as 200 linearly spaced values between -10 and 10. Create y as the cosine of x.
Plot the data.

x = linspace(-10,10,200);
y = cos(x);
plot(x,y)

2 Basic Plotting Commands

2-28

Change the tick value locations along the x-axis and y-axis. Specify the locations as a
vector of increasing values. The values do not need to be evenly spaced.

Also, change the labels associated with each tick value along the x-axis. Specify the labels
using a cell array of character vectors. To include special characters or Greek letters in
the labels, use TeX markup, such as \pi for the symbol.

xticks([-3*pi -2*pi -pi 0 pi 2*pi 3*pi])
xticklabels({'-3\pi','-2\pi','-\pi','0','\pi','2\pi','3\pi'})
yticks([-1 -0.8 -0.2 0 0.2 0.8 1])

 Specify Axis Tick Values and Labels

2-29

For releases prior to R2016b, instead set the tick values and labels using the XTick,
XTickLabel, YTick, and YTickLabel properties of the Axes object. For example,
assign the Axes object to a variable, such as ax = gca. Then set the XTick property
using dot notation, such as ax.XTick = [-3*pi -2*pi -pi 0 pi 2*pi 3*pi]. For
releases prior to R2014b, use the set function to set the property instead.

Rotate Tick Labels

Create a scatter plot and rotate the tick labels along each axis. Specify the rotation as a
scalar value. Positive values indicate counterclockwise rotation. Negative values indicate
clockwise rotation.

x = 1000*rand(40,1);
y = rand(40,1);

2 Basic Plotting Commands

2-30

scatter(x,y)
xtickangle(45)
ytickangle(90)

For releases prior to R2016b, specify the rotation using the XTickLabelRotation and
YTickLabelRotation properties of the Axes object. For example, assign the Axes
object to a variable, such as ax = gca. Then set the XTickLabelRotation property
using dot notation, such as ax.XTickLabelRotation = 45.

Change Tick Label Formatting

Create a stem chart and display the tick label values along the y-axis as US dollar values.

 Specify Axis Tick Values and Labels

2-31

profit = [20 40 50 40 50 60 70 60 70 60 60 70 80 90];
stem(profit)
xlim([0 15])
ytickformat('usd')

For more control over the formatting, specify a custom format. For example, show one
decimal value in the x-axis tick labels using '%.1f'. Display the y-axis tick labels as
British Pounds using '\xA3%.2f'. The option \xA3 indicates the Unicode character for
the Pound symbol. For more information on specifying a custom format, see the
xtickformat function.

xtickformat('%.1f')
ytickformat('\xA3%.2f')

2 Basic Plotting Commands

2-32

Control Value in Exponent Label

Plot data with y values that range between -15,000 and 15,000. By default, the y-axis tick
labels use exponential notation with an exponent value of 4 and a base of 10.

x = linspace(0,5,1000);
y = 100*exp(x).*sin(20*x);
plot(x,y)

 Specify Axis Tick Values and Labels

2-33

Change the exponent value to 2. Set the Exponent property of the ruler object associated
with the y-axis. Access the ruler object through the YAxis property of the Axes object.
The exponent label and the tick labels change accordingly.

ax = gca;
ax.YAxis.Exponent = 2;

2 Basic Plotting Commands

2-34

Change the exponent value to 0 so that the tick labels do not use exponential notation.

ax.YAxis.Exponent = 0;

 Specify Axis Tick Values and Labels

2-35

See Also
Functions
xlim | xtickangle | xtickformat | xticks | yticks | zticks

Properties
Axes | NumericRuler

Related Examples
• “Add Grid Lines and Edit Placement” on page 2-38

2 Basic Plotting Commands

2-36

• “Specify Axis Limits” on page 2-19
• “Add Title, Axis Labels, and Legend to Graph” on page 2-13

 See Also

2-37

Add Grid Lines and Edit Placement
This example shows how to add grid lines to a graph. It also describes how to edit the
placement of the grid lines and modify their appearance.

Display Grid Lines

Create a bar chart and display grid lines. The grid lines appear at the tick marks.

y = rand(10,1);
bar(y)
grid on

Add minor grid lines between the tick marks.

2 Basic Plotting Commands

2-38

grid minor

Turn off all the grid lines.

grid off

 Add Grid Lines and Edit Placement

2-39

Display Grid Lines in Specific Direction

Display the grid lines in a particular direction by accessing the Axes object and setting
the XGrid, YGrid, and ZGrid properties. Set these properties to either 'on' or 'off'.

Create a 2-D plot and display the grid lines only in the y direction.

y = rand(10,1);
bar(y)
ax = gca;
ax.XGrid = 'off';
ax.YGrid = 'on';

2 Basic Plotting Commands

2-40

Create a 3-D plot and display the grid lines only in the z direction. Use the box on
command to show the box outline around the axes.

[X,Y,Z] = peaks;
surf(X,Y,Z)
box on
ax = gca;
ax.ZGrid = 'on';
ax.XGrid = 'off';
ax.YGrid = 'off';

 Add Grid Lines and Edit Placement

2-41

Edit Grid Line Placement

Create a scatter plot of random data and display the grid lines.

x = rand(50,1);
y = rand(50,1);
scatter(x,y)
grid on

2 Basic Plotting Commands

2-42

Grid lines appear at the tick mark locations. Edit the placement of the grid lines by
changing the tick mark locations.

xticks(0:0.2:1)
yticks([0 0.5 0.8 1])

 Add Grid Lines and Edit Placement

2-43

Modify Visual Appearance of Grid Lines

Change the color, line style, and transparency of grid lines for an area plot. Modify the
appearance of the grid lines by accessing the Axes object. Then set properties related to
the grid, such as the GridColor, GridLineStyle, and GridAlpha properties. Display
the grid lines on top of the plot by setting the Layer property.

y = rand(10,1);
area(y)
grid on

ax = gca;
ax.GridColor = [0 .5 .5];
ax.GridLineStyle = '--';

2 Basic Plotting Commands

2-44

ax.GridAlpha = 0.5;
ax.Layer = 'top';

See Also
Functions
grid | xlim | xticks | yticks | zticks

Properties
Axes

 See Also

2-45

Related Examples
• “Specify Axis Tick Values and Labels” on page 2-28
• “Add Title, Axis Labels, and Legend to Graph” on page 2-13
• “Specify Axis Limits” on page 2-19

2 Basic Plotting Commands

2-46

Combine Multiple Plots
You can combine plots in several ways. Combine plots in the same axes, or create multiple
axes in a figure.

Combine Plots in Same Axes

Use the hold on command to combine multiple plots in the same axes. For example, plot
two lines and a scatter plot. Then reset the hold state to off.

x = linspace(0,10,50);
y1 = sin(x);
figure
plot(x,y1)
title('Combine Plots')

hold on
y2 = sin(x/2);
plot(x,y2)

y3 = 2*sin(x);
scatter(x,y3)
hold off

 Combine Multiple Plots

2-47

When the hold state is on, the plots cycle through colors and lines styles based on the
ColorOrder and LineStyleOrder properties of the axes. Also, new plots do not reset
axes properties, such as the title or axis labels. However, the axes limits and tick values
can adjust to accommodate new data.

When the hold state is off, the next new plot clears existing plots and resets axes
properties, such as the title.

Create Multiple Axes in Figure Using Subplots

Create multiple axes in a single figure using the subplot function, which divides the
figure into a grid of subplots.

2 Basic Plotting Commands

2-48

For example, create two stacked subplots and assign the Axes objects to the variables
ax1 and ax2. Add a plot, title, and axis labels to each subplot. Specify the Axes objects as
the first input arguments to each graphics function to ensure that the function targets the
correct axes.

figure
ax1 = subplot(2,1,1);
x = linspace(0,10,50);
y1 = sin(2*x);
plot(ax1,x,y1)
title(ax1,'Subplot 1')
ylabel(ax1,'Values from -1 to 1')

ax2 = subplot(2,1,2);
y2 = rand(50,1);
scatter(ax2,x,y2)
title(ax2,'Subplot 2')
ylabel(ax2,'Values from 0 to 1')

 Combine Multiple Plots

2-49

Add Super Title to Figure with Subplots

When you create a figure with subplots, you might want to add a title that applies to all
the subplots. You can create the appearance of a super title by creating the subplots in a
panel and adding a title to the panel.

Create a panel inside a figure. Specify a title for the panel and adjust some of the font
properties.

f = figure;
p = uipanel('Parent',f,'BorderType','none');
p.Title = 'My Super Title';
p.TitlePosition = 'centertop';

2 Basic Plotting Commands

2-50

p.FontSize = 12;
p.FontWeight = 'bold';

Create two subplots in the panel by setting the Parent parameter to the panel object.
Title each individual subplot.

subplot(1,2,1,'Parent',p)
x = linspace(0,10,50);
y1 = sin(2*x);
plot(x,y1)
title('Subplot 1')

subplot(1,2,2,'Parent',p)
y2 = rand(50,1);

 Combine Multiple Plots

2-51

scatter(x,y2)
title('Subplot 2')

See Also
Functions
figure | hold | subplot | title | uipanel

Related Examples
• “Create Chart with Two y-Axes” on page 2-54

2 Basic Plotting Commands

2-52

• “Specify Axis Tick Values and Labels” on page 2-28

 See Also

2-53

Create Chart with Two y-Axes
This example shows how to create a chart with y-axes on the left and right sides using the
yyaxis function. It also shows how to label each axis, combine multiple plots, and clear
the plots associated with one or both of the sides.

Plot Data Against Left y-Axis

Create axes with a y-axis on the left and right sides. The yyaxis left command creates
the axes and activates the left side. Subsequent graphics functions, such as plot, target
the active side. Plot data against the left y-axis.

x = linspace(0,25);
y = sin(x/2);
yyaxis left
plot(x,y);

2 Basic Plotting Commands

2-54

Plot Data Against Right y-Axis

Activate the right side using yyaxis right. Then plot a set of data against the right y-
axis.

r = x.^2/2;
yyaxis right
plot(x,r);

 Create Chart with Two y-Axes

2-55

Add Title and Axis Labels

Control which side of the axes is active using the yyaxis left and yyaxis right
commands. Then, add a title and axis labels.

yyaxis left
title('Plots with Different y-Scales')
xlabel('Values from 0 to 25')
ylabel('Left Side')

yyaxis right
ylabel('Right Side')

2 Basic Plotting Commands

2-56

Plot Additional Data Against Each Side

Add two more lines to the left side using the hold on command. Add an errorbar to the
right side. The new plots use the same color as the corresponding y-axis and cycle
through the line style order. The hold on command affects both the left and right sides.

hold on

yyaxis left
y2 = sin(x/3);
plot(x,y2);
y3 = sin(x/4);
plot(x,y3);

 Create Chart with Two y-Axes

2-57

yyaxis right
load count.dat;
m = mean(count,2);
e = std(count,1,2);
errorbar(m,e)

hold off

Clear One Side of Axes

Clear the data from the right side of the axes by first making it active, and then using the
cla command.

2 Basic Plotting Commands

2-58

yyaxis right
cla

Clear Axes and Remove Right y-Axis

Clear the entire axes and remove the right y-axis using cla reset.

cla reset

 Create Chart with Two y-Axes

2-59

Now when you create a plot, it only has one y-axis. For example, plot three lines against
the single y-axis.

xx = linspace(0,25);
yy1 = sin(x/4);
yy2 = sin(x/5);
yy3 = sin(x/6);
plot(xx,yy1,xx,yy2,xx,yy3)

2 Basic Plotting Commands

2-60

Add Second y-Axis to Existing Chart

Add a second y-axis to an existing chart using yyaxis. The existing plots and the left y-
axis do not change colors. The right y-axis uses the next color in the axes color order.
New plots added to the axes use the same color as the corresponding y-axis.

yyaxis right
rr1 = exp(xx/6);
rr2 = exp(xx/8);
plot(xx,rr1,xx,rr2)

 Create Chart with Two y-Axes

2-61

See Also
Functions
cla | hold | plot | title | xlabel | ylabel | yyaxis

Related Examples
• “Modify Properties of Charts with Two y-Axes” on page 2-63
• “Combine Multiple Plots” on page 2-47

2 Basic Plotting Commands

2-62

Modify Properties of Charts with Two y-Axes
In this section...
“Change Axes Properties” on page 2-63
“Change Ruler Properties” on page 2-65
“Specify Colors Using Default Color Order” on page 2-67

The yyaxis function creates an Axes object with a y-axis on the left and right sides. Axes
properties related to the y-axis have two values. However, MATLAB gives access only to
the value for the active side. For example, if the left side is active, then the YDir property
of the Axes object contains the direction for the left y-axis. Similarly, if the right side is
active, then the YDir property contains the direction for the right y-axis. An exception is
that the YAxis property contains an array of two ruler objects (one for each y-axis).

You can change the appearance and behavior of a particular y-axis in either of these ways:

• Set the active side, and then change property values for the Axes object.
• Access the ruler objects through the YAxis property of the Axes object, and then

change property values for the ruler object.

Change Axes Properties
Modify properties of a chart with two y-axes by setting Axes properties.

Create a chart with two y-axes and plot data.

x = [1 2 3];
y1 = [2 6 4; 3 5 4; 5 7 8];
y2 = 100*[5 5 3; 3 4 7; 5 6 3];
figure
yyaxis left
plot(x,y1)
yyaxis right
plot(x,y2)

 Modify Properties of Charts with Two y-Axes

2-63

Reverse the direction of increasing values along each y-axis. Use yyaxis left to
activate the left side and set the direction for the left y-axis. Similarly, use yyaxis right
to activate the right side. Then, set the direction for the right y-axis.

ax = gca;
yyaxis left
ax.YDir = 'reverse';
yyaxis right
ax.YDir = 'reverse';

2 Basic Plotting Commands

2-64

Change Ruler Properties
Modify properties of a chart with two y-axes by setting ruler properties.

Create a chart with two y-axes and plot data.

x = [1 2 3];
y1 = [2 6 4; 3 5 4; 5 7 8];
y2 = 100*[5 5 3; 3 4 7; 5 6 3];
figure
yyaxis left
plot(x,y1)

 Modify Properties of Charts with Two y-Axes

2-65

yyaxis right
plot(x,y2)

Reverse the direction of increasing values along each y-axis by setting properties of the
ruler object associated with each axis. Use ax.YAxis(1) to refer to the ruler for the left
side and ax.YAxis(2) to refer to the ruler for the right side.

ax = gca;
ax.YAxis(1).Direction = 'reverse';
ax.YAxis(2).Direction = 'reverse';

2 Basic Plotting Commands

2-66

Specify Colors Using Default Color Order
Specify the colors for a chart with two y-axes by changing the default axes color order.

Create a figure. Define two RGB color values, one for the left side and one for the right
side. Change the default axes color order to these two colors before creating the axes. Set
the default value at the figure level so that the new colors affect only axes that are
children of the figure fig. The new colors do not affect axes in other figures. Then create
the chart.

fig = figure;
left_color = [.5 .5 0];

 Modify Properties of Charts with Two y-Axes

2-67

right_color = [0 .5 .5];
set(fig,'defaultAxesColorOrder',[left_color; right_color]);

y = [1 2 3; 4 5 6];
yyaxis left
plot(y)

z = [6 5 4; 3 2 1];
yyaxis right
plot(z)

2 Basic Plotting Commands

2-68

See Also
Functions
plot | yyaxis

Properties
Axes | Numeric Ruler

Related Examples
• “Create Chart with Two y-Axes” on page 2-54
• “Default Property Values” on page 11-2

 See Also

2-69

Plot Imaginary and Complex Data
Plot One Complex Input

This example shows how to plot the imaginary part versus the real part of a complex
vector, z. With complex inputs, plot(z) is equivalent to plot(real(z),imag(z)),
where real(z) is the real part of z and imag(z) is the imaginary part of z.

Define z as a vector of eigenvalues of a random matrix.

z = eig(randn(20));

Plot the imaginary part of z versus the real part of z. Display a circle at each data point.

figure
plot(z,'o')

2 Basic Plotting Commands

2-70

Plot Multiple Complex Inputs

This example shows how to plot the imaginary part versus the real part of two complex
vectors, z1 and z2. If you pass multiple complex arguments to plot, such as
plot(z1,z2), then MATLAB® ignores the imaginary parts of the inputs and plots the
real parts. To plot the real part versus the imaginary part for multiple complex inputs, you
must explicitly pass the real parts and the imaginary parts to plot.

Define the complex data.

x = -2:0.25:2;
z1 = x.^exp(-x.^2);
z2 = 2*x.^exp(-x.^2);

 Plot Imaginary and Complex Data

2-71

Find the real part and imaginary part of each vector using the real and imag functions.
Then, plot the data.

real_z1 = real(z1);
imag_z1 = imag(z1);

real_z2 = real(z2);
imag_z2 = imag(z2);

plot(real_z1,imag_z1,'g*',real_z2,imag_z2,'bo')

2 Basic Plotting Commands

2-72

See Also
imag | plot | real

 See Also

2-73

Create Heatmap from Tabular Data
Heatmaps are a way to visualize data using color. This example shows how to import a file
into MATLAB® as a table and create a heatmap from the table columns. It also shows
how to modify the appearance of the heatmap, such as setting the title and axis labels.

Import File as Table

Load the sample file TemperatureData.csv, which contains average daily temperatures
from January 2015 through July 2016. Read the file into a table and display the first five
rows.

tbl = readtable(fullfile(matlabroot,'examples','graphics','TemperatureData.csv'));
head(tbl,5)

ans=5×4 table
 Year Month Day TemperatureF
 ____ _________ ___ ____________

 2015 'January' 1 23
 2015 'January' 2 31
 2015 'January' 3 25
 2015 'January' 4 39
 2015 'January' 5 29

Create Basic Heatmap

Create a heatmap that shows the months along the x-axis and years along the y-axis.
Color the heatmap cells using the temperature data by setting the ColorVariable
property. Assign the HeatmapChart object to the variable h. Use h to modify the chart
after it is created.

h = heatmap(tbl,'Month','Year','ColorVariable','TemperatureF');

2 Basic Plotting Commands

2-74

By default, MATLAB calculates the color data as the average temperature for each month.
However, you can change the calculation method by setting the ColorMethod property.

Reorder Values Along Axis

The values along an axis appear in alphabetical order. Reorder the months so that they
appear in chronological order. You can customize the labels using categorical arrays or by
setting HeatmapChart properties.

To use categorical arrays, first change the data in the Month column of the table from a
cell array to a categorical array. Then use the reordercats function to reorder the
categories. You can apply these functions to the table in the workspace (tbl) or to the
table stored in the SourceTable property of the HeatmapChart object

 Create Heatmap from Tabular Data

2-75

(h.SourceTable). Applying them to the table stored in the HeatmapChart object avoids
affecting the original data.

h.SourceTable.Month = categorical(h.SourceTable.Month);
neworder = {'January','February','March','April','May','June','July',...
 'August','September','October','November','December'};
h.SourceTable.Month = reordercats(h.SourceTable.Month,neworder);

Similarly, you can add, remove, or rename the heatmap labels using the addcats,
removecats, or renamecats functions for categorical arrays.

Alternatively, you can reorder the values along an axis using the XDisplayData and
YDisplayData properties of the HeatmapChart object.

2 Basic Plotting Commands

2-76

h.XDisplayData = {'January','February','March','April','May','June','July',...
 'August','September','October','November','December'};

Modify Title and Axis Labels

When you create a heatmap using tabular data, the heatmap automatically generates a
title and axis labels. Customize the title and axis labels by setting the Title, XLabel,
and YLabel properties of the HeatmapChart object. For example, change the title and
remove the x-axis label. Also, change the font size.

h.Title = 'Average Temperatures';
h.XLabel = '';
h.FontSize = 12;

 Create Heatmap from Tabular Data

2-77

Modify Appearance of Missing Data Cells

Since there is no data for August 2016 through December 2016, those cells appear as
missing data. Modify the appearance of the missing data cells using the
MissingDataColor and MissingDataLabel properties.

h.MissingDataColor = [0.8 0.8 0.8];
h.MissingDataLabel = 'No Data';

2 Basic Plotting Commands

2-78

Remove Colorbar

Remove the colorbar by setting the ColorbarVisible property.

h.ColorbarVisible = 'off';

 Create Heatmap from Tabular Data

2-79

Format Cell Text

Customize the format of the text that appears in each cell by setting the
CellLabelFormat property. For example, display the text with no decimal values.

h.CellLabelFormat = '%.0f';

2 Basic Plotting Commands

2-80

Add or Remove Values Along Axis

Show only the first month of each quarter by setting the XDisplayData property. Add
the year 2017 along the y-axis by setting the YDisplayData property. Set these
properties to a subset, superset, or permutation of the values in XData or YData,
respectively.

h.XDisplayData = {'January','April','July','October'};
h.YDisplayData = {'2015','2016','2017'};

 Create Heatmap from Tabular Data

2-81

Since there is no data associated with the year 2017, the heatmap cells use the missing
data color.

See Also
Functions
addcats | categorical | heatmap | readtable | removecats | renamecats |
reordercats | table

Properties
HeatmapChart

2 Basic Plotting Commands

2-82

Data Exploration Tools

• “Ways to Explore Graphical Data” on page 3-2
• “Display Data Values Interactively” on page 3-4
• “Zooming in Graphs” on page 3-15
• “Panning — Shifting Your View of the Graph” on page 3-17
• “Rotate in 3-D” on page 3-18

3

Ways to Explore Graphical Data
In this section...
“Introduction” on page 3-2
“Types of Tools” on page 3-2

Introduction
After determining what type of graph best represents your data, you can further enhance
the visual display of information using the tools discussed in this section. These tools
enable you to explore data interactively.

Once you have achieved the desired results, you can then generate the MATLAB code
necessary to reproduce the graph you created interactively. See “Save Figure to Reopen
in MATLAB Later” on page 8-33 for more information.

Types of Tools
See the following sections for information on specific tools.

• “Display Data Values Interactively” on page 3-4
• “Zooming in Graphs” on page 3-15
• “Panning — Shifting Your View of the Graph” on page 3-17
• “Rotate in 3-D” on page 3-18
• “View Control with the Camera Toolbar”

You can also explore graphs visually with data brushing and linking:

• Data brushing lets you “paint” observations on a graph to select them for special
treatment, such as

• Extracting them into new variables
• Replacing them with constant or NaN values
• Deleting them

• Data linking connects graphs with the workspace variables they display, updating
graphs when variables change

3 Data Exploration Tools

3-2

Brushing and linking work together across plots. When multiple graphs or subplots
display the same variables, linking the graphs and brushing any of them causes the same
data to also highlight on other linked graphs. The highlighting also appears on the
selected rows of data when the variables are opened in the Variable Editor. For details,
see “Marking Up Graphs with Data Brushing” and “Making Graphs Responsive with Data
Linking”.

You can perform numerical data analysis directly on graphs with basic curve fitting.

• “Linear Regression”
• “Interactive Fitting”

 Ways to Explore Graphical Data

3-3

Display Data Values Interactively
In this section...
“What Is a Data Cursor?” on page 3-4
“Enabling Data Cursor Mode” on page 3-5
“Display Style — Datatip or Cursor Window” on page 3-12
“Selection Style — Select Data Points or Interpolate Points on Graph” on page 3-13
“Exporting Data Value to Workspace Variable” on page 3-13

What Is a Data Cursor?
Data cursors enable you to read data directly from a graph by displaying the values of
points you select on plotted lines, surfaces, images, and so on. You can place multiple
datatips in a plot and move them interactively. If you save the figure, the datatips in it are
saved, along with any other annotations present.

When data cursor mode is enabled, you can

• Click on any graphics object defined by data values and display the x, y, and z (if 3-D)
values of the nearest data point.

• Interpolate the values of points between data points.
• Display multiple data tips on graphs.
• Display the data values in a cursor window that you can locate anywhere in the figure

window or as a data tip (small text box) located next to the data point.
• Export data values as workspace variables.
• Print or export the graph with data tip or cursor window displayed for annotation

purposes.
• Edit the data tip display function to customize what information is displayed and how

it is presented
• Select a different data tip display function

3 Data Exploration Tools

3-4

Enabling Data Cursor Mode

Select the data cursor icon in the figure toolbar or select the Data Cursor item in
the Tools menu.

Once you have enabled data cursor mode, clicking the mouse on a line or other graph
object displays data values of the point clicked. Clicking elsewhere does not create or
update data tips. To place additional data tips, as the picture below shows, see “Creating
Multiple Data Tips” on page 3-10, below. In the picture, the black squares are located at
points selected by the Data Cursor tool, and the data tips next to them display the x and y
values of those points.

The illustrations below use traffic count data stored in count.dat:

load count.dat
plot(count)

 Display Data Values Interactively

3-5

Moving the Marker

You can move the marker using the arrow keys and the mouse. The up and right arrows
move the marker to data points having greater index values in the data arrays. The down
and left arrow keys move the marker to data points having lesser index values. When you
set Selection Style to Mouse Position using the tool's context menu, you can drag
markers and position them anywhere along a line. However, you cannot drag markers
between different line or other series on a plot. The cursor changes to crossed arrows
when it comes close enough to a marker for you to drag the datatip, as shown below:

3 Data Exploration Tools

3-6

Positioning the Datatip Text Box

You can position the data tip text box in any one of four positions with respect to the data
point: upper right (the default), upper left, lower left, and lower right.

To position the datatip, press, but do not release the mouse button while over the datatip
text box and drag it to one of the four positions, as shown below:

You can reposition a datatip, but not its text box, using the arrow keys as well.

Dragging the Datatip to Different Locations

You can drag the datatip to different locations on the graph object by clicking down on the
datatip and dragging the mouse. You can also use the arrow keys to move the datatip.

 Display Data Values Interactively

3-7

Note Surface plots and 3-D bar graphs can contain NaN values. If you drag a datatip to a
location coded as NaN, the datatip will disappear (because its coordinates become
(NaN,NaN,NaN)). You can continue to drag it invisibly, however, and it will reappear
when it is over a non-NaN location. However, if you create a new datatip while the
previous current one is invisible, the previous one cannot be retrieved.

Datatips on Image Objects

Datatips on images display the x- and y-coordinates as well as the RGB values and a color
index (for indexed images), as show below:

3 Data Exploration Tools

3-8

Datatips on 3-D Objects

You can use datatips to read data points on 3-D graphs as well. In 3-D views, data tips
display the x-, y- and z-coordinates.

 Display Data Values Interactively

3-9

Creating Multiple Data Tips

Normally, there is only one datatip displayed at one time. However, you can display
multiple datatips simultaneously on a graph. This is a simple way to annotate a number of
points on a graph.

Use the following procedure to create multiple datatips.

1 Enable data cursor mode from the figure toolbar. The cursor changes to a cross.
2 Click on the graph to insert a datatip.
3 Right-click to display the context menu. Select Create New Datatip.
4 Click on the graph to place the second datatip.

3 Data Exploration Tools

3-10

Deleting Datatips

You can remove the most recently added datatip or all datatips. When in data cursor
mode, right-click to display the context menu.

• Select Delete Current Datatip or press the Delete key to remove the last datatip
that you added.

• Select Delete All Datatips to remove all datatips.

Customizing Data Cursor Text

You can customize the text displayed by the data cursor using the datacursormode
function. Use the last two items in the Data Cursor context menu for this purpose:

• Edit Text Update Function — Opens an editor window to let you modify the function
currently being used to place text in datatips

• Select Text Update Function — Opens an input file dialog for you to navigate to and
select a MATLAB file to use to format text in datatips you subsequently create

When you select Edit Text Update Function for the first time, an editor window opens
with the default text update callback, which consists of the following code:

function output_txt = myfunction(obj,event_obj)
% Display the position of the data cursor
% obj Currently not used (empty)
% event_obj Handle to event object
% output_txt Data cursor text (character vector or cell array of character vectors).

pos = get(event_obj,'Position');
output_txt = {['X: ',num2str(pos(1),4)],...
 ['Y: ',num2str(pos(2),4)]};

% If there is a Z-coordinate in the position, display it as well
if length(pos) > 2
 output_txt{end+1} = ['Z: ',num2str(pos(3),4)];
end

You can modify this code to display properties of the graphics object other than position.
If you want to do so, you should first save this code to a MATLAB file before changing it,
and select that file if you want to revert to default datatip displays during the same
session.

If for example you save it as def_datatip_cb.m, and then modify the code and save it to
another file, you can then choose between the default behavior and customized behavior
by choosing Select Text Update Function from the context menu and selecting one of
the callbacks you saved.

 Display Data Values Interactively

3-11

See the datacursormode reference page for more information on using data cursor
objects and update functions. Also see the example of customizing datatip text in “Using
Data Tips to Explore Graphs”.

Display Style — Datatip or Cursor Window
By default, the data cursor displays values as a datatip (small text box located next to the
data point). You can also display a single data value in a cursor window that is anchored
within the figure window. You can place multiple datatips on a graph, which makes this
display style useful for annotations.

The cursor window style is particularly useful when you want to drag the data cursor to
explore image and surface data; numeric information in the window updates without
obscuring the any of the figure's symbology.

To use the cursor window, change the display style as follows:

1 While in data cursor mode, right-click to display the context menu.
2 Mouse over the Display Style item.
3 Select Window Inside Figure.

Note If you change the data cursor Display Style from Datatip to Window Inside
Figure with the context menu, only the most recent data tip is displayed; all other

3 Data Exploration Tools

3-12

existing data tips are removed because the window can display only one datatip at a
time.

Selection Style — Select Data Points or Interpolate Points on
Graph
By default, the data cursor displays the values of the data point nearest to the point you
click with the mouse, and the data marker snaps to this point. The data cursor can also
determine the values of points that lie in between the data defining the graph, by linearly
interpolating between the two data points closest to the location you click the mouse.

Enabling Interpolation Mode

If you want to be able to select any point along a graph and display its value, use the
following procedure:

1 While in data cursor mode, right-click to display the context menu.
2 Mouse over the Selection Style item.
3 Select Mouse Position.

MATLAB does not honor interpolation mode when you use the arrow keys to move a
datatip to a new location.

Exporting Data Value to Workspace Variable
You can export the values displayed with the data cursor to MATLAB workspace variables.
To do this, display the right-click context menu while in data cursor mode and select
Export Cursor Data to Workspace.

The Export Cursor Data to Workspace dialog then displays so that you can name the
workspace variable.

Clicking OK creates a MATLAB structure with the specified name in your base
workspace, containing the following fields:

• Target — Handle of the graphics object containing the data point
• Position — x- and y- (and z-) coordinates of the data cursor location in axes data

units

Line and lineseries objects have an additional field:

 Display Data Values Interactively

3-13

• DataIndex — A scalar index into the data arrays that correspond to the nearest data
point. The value is the same for each array.

For example, if you saved the workspace variable as cursor_info, then you would
access the position data by referencing the Position field.

cursor_info.Position
ans =
 0.4189 0.1746 0

3 Data Exploration Tools

3-14

Zooming in Graphs

In this section...
“Zooming in 2-D and 3-D” on page 3-15
“Zooming in 2-D Views” on page 3-15
“Zooming in 3-D Views” on page 3-16

Zooming in 2-D and 3-D
Zooming changes the magnification of a graph without changing the size of the figure or
axes. Zooming is useful to see greater detail in a small area. As explained below, zooming
behaves differently depending on whether it is applied to a 2-D or 3-D view.

Enable zooming by clicking one of the zoom icons . Select + to zoom in and – to
zoom out.

Tip When in zoom in mode, you can use Shift+click to zoom out (i.e., press and hold
down the Shift key while clicking the mouse). You can also right-click and zoom out or
restore the plot to its original view using the context menu.

Zooming in 2-D Views
In 2-D views, click the area of the axes where you want to zoom in, or drag the cursor to
draw a box around the area you want to zoom in on. MATLAB redraws the axes, changing
the limits to display the specified area.

When you right-click in Zoom mode, the context menu enables you to:

• Zoom out
• Reset to the view of the graph when it was plotted (undo one or more changes of view)
• Constrain zooming to expand only the x-axis (horizontal zoom)
• Constrain zooming to expand only the y-axis (vertical zoom)

 Zooming in Graphs

3-15

Undoing Zoom Actions

If you want to reset the graph to its original view, right-click to display the context menu
and select Reset to Original View. You can also use the Undo item on the Edit menu to
undo each operation you performed on your graph.

Zoom Constrained to Horizontal or Vertical

In 2-D views, you can constrain zoom to operate in either the horizontal or vertical
direction. To do this, right-click to display the context menu while in zoom mode and
select the desired constraint from the Zoom Options submenu, as illustrated in the
previous figure. Horizontal zooming is useful for exploring time series graphs that have
dense intervals. Vertical zooming can help you see minor variations in places where the
YData range is small compared to the y-axis limits.

Zooming in 3-D Views
In 3-D views, moving the cursor up or to the right zooms in, while moving the cursor
down or to the left zooms out. Both toolbar icons enable the same behavior.

Zooming shifts the view of the data by modifying the axis limits. For axes in a 3-D view, if
you want zooming to modify camera properties of the axes instead, then right-click the
axes when in zoom mode and select 3D Options > Camera Pan and Zoom.

3 Data Exploration Tools

3-16

Panning — Shifting Your View of the Graph
You can move your view of a graph up and down as well as left and right with the pan
tool. Panning is useful when you have zoomed in on a graph and want to translate the plot
to view different portions.

Click the hand icon on the figure toolbar to enable panning. In pan mode you can
move up, down, left, or right. You can constrain movement to be vertical or horizontal
only by right-clicking and selecting one of the Pan Options from the pan tool's context
menu.

Panning shifts the view of the data by modifying the axis limits. For axes in a 3-D view, if
you want panning to modify camera properties of the axes instead, then right-click the
axes when in pan mode and select 3D Options > Camera Pan and Zoom.

 Panning — Shifting Your View of the Graph

3-17

Rotate in 3-D
In this section...
“Enabling 3-D Rotation” on page 3-18
“Selecting Predefined Views” on page 3-18
“Rotation Style for Complex Graphs” on page 3-19
“Undo/Redo — Eliminating Mistakes” on page 3-21

Enabling 3-D Rotation
You can easily rotate graphs to any orientation with the mouse. Rotation involves the
reorientation of the axes and all the graphics objects it contains. Therefore none of the
data defining the graphics objects is affected by rotation; instead the orientation of the x-,
y-, and z-axes changes with respect to the viewer.

There are three ways to enable Rotate 3D mode:

• Select Rotate 3D from the Tools menu.
•

Click the Rotate 3D icon in the figure toolbar.
• Execute the rotate3d command.

Once the mode is enabled, you press and hold the mouse button while moving the cursor
to rotate the graph.

Selecting Predefined Views
When Rotate 3D mode is enabled, you can control various rotation options from the right-
click context menu.

You can rotate to predefined views on the right-click context menu:

• Reset to Original View — Reset to the default view (azimuth -37.5°, elevation 30°).
• Go to X-Y View — View graph along the z-axis (azimuth 0°, elevation 90°).
• Go to X-Z View — View graph along the y-axis (azimuth 0°, elevation 0°).
• Go to Y-Z View — View graph along the x-axis (azimuth 90°, elevation 0°).

3 Data Exploration Tools

3-18

Rotation Style for Complex Graphs
You can select from two rotation styles on the right-click context menu's Rotation
Options submenu:

• Plot Box Rotate — Display only the axes bounding box for faster rotation of complex
objects. Use this option if the default Continuous Rotate style is unacceptably slow.

• Continuous Rotate — Display all graphics during rotation.

Axes Behavior During Rotation

You can select two types of behavior with respect to the aspect ratio of axes during
rotation:

• Stretch-to-Fill Axes – Default axes behavior is optimized for 2-D plots. Graphs fit the
rectangular shape of the figure.

• Fixed Aspect Ratio Axes – Maintains a fixed shape of objects in the axes as they are
rotated. Use this setting when rotating 3-D plots.

The following pictures illustrate a sphere as it is rotated with Stretch-to-Fill Axes
selected. Notice that the sphere is not round due to the selected aspect ratio.

 Rotate in 3-D

3-19

The next picture shows how the Fixed Aspect Ratio Axes option results in a sphere that
maintains its proper shape as it is rotated.

3 Data Exploration Tools

3-20

Undo/Redo — Eliminating Mistakes
The figure Edit menu contains two items that enable you to undo any zoom, pan, or rotate
operation.

Undo — Remove the effect of the last operation.

Redo — Perform again the last operation that you removed by selecting Undo.

 Rotate in 3-D

3-21

Annotating Graphs

• “Add Text to Specific Points on Graph” on page 4-2
• “Include Variable Values in Graph Text” on page 4-9
• “Text with Mathematical Expression Using LaTeX” on page 4-12
• “Greek Letters and Special Characters in Graph Text” on page 4-17
• “Add Annotations to Graph Interactively” on page 4-24
• “Add Text to Graph Interactively” on page 4-27
• “Align Objects in Graph Using Alignment Tools” on page 4-33

4

Add Text to Specific Points on Graph
In this section...
“Add Text to Three Data Points on Graph” on page 4-2
“Determine Minimum and Maximum Points and Add Text” on page 4-5

Add Text to Three Data Points on Graph
This example shows how to add text descriptions with arrows that point to three data
points on a graph.

Use the linspace function to create t as a vector of 50 values between 0 and .
Create y as sine values. Plot the data.

t = linspace(0,2*pi,50);
y = sin(t);
plot(t,y)

4 Annotating Graphs

4-2

Use the text function to add a text description to the graph at the point . The
first two input arguments to this function specify the text position. The third argument
specifies the text. Display an arrow pointing to the left by including the TeX markup
\leftarrow in the text. Use the TeX markup \pi for the Greek letter .

x1 = pi;
y1 = sin(pi);
txt1 = '\leftarrow sin(\pi) = 0';
text(x1,y1,txt1)

 Add Text to Specific Points on Graph

4-3

Add text descriptions to two more data points on the graph. By default, the data point is
to the left of the text. To show the data point to the right of the text, specify the
HorizontalAlignment property as 'right'. Use the TeX markup \rightarrow to
display an arrow pointing to the right.

x2 = 3*pi/4;
y2 = sin(3*pi/4);
txt2 = '\leftarrow sin(3\pi/4) = 0.71';
text(x2,y2,txt2)

x3 = 5*pi/4;
y3 = sin(5*pi/4);
txt3 = 'sin(5\pi/4) = -0.71 \rightarrow';
text(x3,y3,txt3,'HorizontalAlignment','right')

4 Annotating Graphs

4-4

Determine Minimum and Maximum Points and Add Text
This example shows how to determine the minimum and maximum data points on a graph
and add text descriptions next to these values.

Create a plot.

x = linspace(-3,3);
y = (x/5-x.^3).*exp(-2*x.^2);
plot(x,y)

 Add Text to Specific Points on Graph

4-5

Find the indices of the minimum and maximum values in y. Use the indices to determine
the (x,y) values at the minimum and maximum points.

indexmin = find(min(y) == y);
xmin = x(indexmin);
ymin = y(indexmin);

indexmax = find(max(y) == y);
xmax = x(indexmax);
ymax = y(indexmax);

Add text to the graph at these points. Use num2str to convert the y values to text.
Specify the text alignment in relation to the data point using the HorizontalAlignment
property.

4 Annotating Graphs

4-6

strmin = ['Minimum = ',num2str(ymin)];
text(xmin,ymin,strmin,'HorizontalAlignment','left');

strmax = ['Maximum = ',num2str(ymax)];
text(xmax,ymax,strmax,'HorizontalAlignment','right');

See Also
linspace | plot | text | title | xlabel | ylabel

 See Also

4-7

Related Examples
• “Include Variable Values in Graph Text” on page 4-9
• “Greek Letters and Special Characters in Graph Text” on page 4-17

4 Annotating Graphs

4-8

Include Variable Values in Graph Text
These examples show how to include variable values in text on a graph.

Include Variable Value in Axis Label
Include a variable value in the x-axis label. Use the num2str function to convert the
number to text.

x = linspace(0,10);
amp = 2;
y = amp*cos(x);
plot(x,y)
xlabel(['Sine wave: ' num2str(amp) ' units in amplitude.'])

 Include Variable Values in Graph Text

4-9

Include Loop Variable Value in Graph Title
Use a loop to create a figure containing four subplots. In each subplot, plot a sine wave
with different frequencies based on the loop variable k. Add a title to each subplot that
includes the value of k.

x = linspace(0,10,100);
for k = 1:4
 subplot(2,2,k);
 yk = sin(k*x);
 plot(x,yk)

4 Annotating Graphs

4-10

 title(['y = sin(' num2str(k) 'x)'])
end

See Also
figure | linspace | num2str | plot | subplot | title

Related Examples
• “Add Text to Specific Points on Graph” on page 4-2
• “Greek Letters and Special Characters in Graph Text” on page 4-17

 See Also

4-11

Text with Mathematical Expression Using LaTeX
These examples show how add text to a graph that includes mathematical expressions
using LaTeX.

By default, text objects in MATLAB support a subset of TeX markup. For a list of
supported TeX markup, see the text Interpreter property description. To use additional
special characters, such as integral and summation symbols, use LaTeX markup. To use
LaTeX markup, you must set the Interpreter property of the text object to 'latex'.
For more information on LaTeX, see The LaTeX Project website at http://www.latex-
project.org/.

Add Text with Integral Expression to Graph

Plot . Draw a vertical line at from the x-axis to the plotted line.

x = linspace(0,3);
y = x.^2.*sin(x);
plot(x,y)
line([2,2],[0,2^2*sin(2)])

4 Annotating Graphs

4-12

http://www.latex-project.org
http://www.latex-project.org

Add text to the graph that contains an integral expression using LaTeX markup and add
an arrow annotation to the graph. To use LaTeX markup, set the Interpreter property
for the text object to 'latex'.

str = '$$ \int_{0}^{2} x^2\sin(x) dx $$';
text(0.25,2.5,str,'Interpreter','latex')
annotation('arrow','X',[0.32,0.5],'Y',[0.6,0.4])

 Text with Mathematical Expression Using LaTeX

4-13

Add Text with Summation Symbol to Graph
Plot the sine function and plot two polynomials.

x = linspace(-3,3);
y = sin(x);
plot(x,y)

y0 = x;
hold on
plot(x,y0)

y1 = x - x.^3/6;

4 Annotating Graphs

4-14

plot(x,y1)
hold off

Add a text description to the graph that includes a summation symbol using LaTeX
markup. To use LaTeX, set the Interpreter property for the text object to 'latex'.

str = '$$\sin(x) = \sum_{n=0}^{\infty}{\frac{(-1)^n x^{2n+1}}{(2n+1)!}}$$';
text(-2,1,str,'Interpreter','latex')

 Text with Mathematical Expression Using LaTeX

4-15

See Also
Text | annotation | text | title | xlabel | ylabel

Related Examples
• “Add Text to Specific Points on Graph” on page 4-2
• “Greek Letters and Special Characters in Graph Text” on page 4-17

4 Annotating Graphs

4-16

Greek Letters and Special Characters in Graph Text
You can add text to a graph that includes Greek letters and special characters using TeX
markup. You also can use TeX markup to add superscripts, subscripts, and modify the text
type and color.

Include Greek Letters in Graph Text

Create a simple line plot and add a title to the graph. Include the Greek letter in the
title by using the TeX markup \pi.

x = linspace(0,2*pi);
y = sin(x);
plot(x,y)
title('x ranges from 0 to 2\pi')

 Greek Letters and Special Characters in Graph Text

4-17

Include Superscripts and Annotations in Graph Text
Create a line plot and add a title and axis labels to the graph. Display a superscript in the
title using the ^ character. The ^ character modifies the character immediately following
it. Include multiple characters in the superscript by enclosing them in curly braces {}.
Include the Greek letters and in the text using the TeX markups \alpha and \mu,
respectively.

t = 1:900;
y = 0.25*exp(-0.005*t);

figure

4 Annotating Graphs

4-18

plot(t,y)
title('Ae^{\alphat} for A = 0.25 and \alpha = -0.0005')
xlabel('Time \musec')
ylabel('Amplitude')

Add text at the data point where t = 300. Use the TeX markup \bullet to add a marker
to the specified point and use \leftarrow to include an arrow pointing to the left. By
default, the specified data point is to the left of the text.

txt = '\bullet \leftarrow 0.25t e^{-0.005t} at t = 300';
text(t(300),y(300),txt)

 Greek Letters and Special Characters in Graph Text

4-19

TeX Markup Options
MATLAB supports a subset of TeX markup. Use TeX markup to add superscripts and
subscripts, modify the text type and color, and include special characters. MATLAB
interprets the text using TeX markup as long as the Interpreter property of the text
object is set to 'tex' (the default).

When you set the Interpreter property to 'tex', the supported modifiers are as
follows. Modifiers remain in effect until the end of the text. Superscripts and subscripts
are an exception because they modify only the next character or the characters within the
curly braces.

4 Annotating Graphs

4-20

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Set

specifier as the name of
a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size — Set specifier
as a numeric scalar value in
point units to change the
font size.

'\fontsize{15} text'

\color{specifier} Font color — Set specifer
as one of these colors: red,
green, yellow, magenta,
blue, black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color — Set
specifier as a three-
element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

 Greek Letters and Special Characters in Graph Text

4-21

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇

4 Annotating Graphs

4-22

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

See Also
plot | text | title | xlabel | ylabel

More About
• “Add Title, Axis Labels, and Legend to Graph” on page 2-13
• “Include Variable Values in Graph Text” on page 4-9
• “Add Text to Specific Points on Graph” on page 4-2

 See Also

4-23

Add Annotations to Graph Interactively
These examples show how to interactively add annotations to a graph and pin them to the
axes.

Add Annotations
Create a simple line plot.

x = linspace(1,10);
plot(x,sin(x))

Interactively add a text arrow and an ellipse to the graph using the figure Insert menu.
Position the text arrow by drawing an arrow from tail to head and typing the text at the
text cursor next to the tail. Click outside the text entry box to apply the text. Position the
ellipse using the mouse to draw.

4 Annotating Graphs

4-24

To change the location of an annotation, drag it. To modify the appearance of an
annotation, right-click it and use the context menu. To view additional properties, open
the Property Editor select Show Property Editor from the context menu.

Pin Annotations to Points in Graph
Pin the text arrow and ellipse to the axes so that they stay associated with the same
coordinates in the axes, even when you pan the axes or resize the figure. Right-click it
and select Pin to Axes. Pin both ends of the text arrow.

 Add Annotations to Graph Interactively

4-25

Click the pan icon in the figure toolbar and pan the axes by dragging it. The text
arrow and ellipse stay associated with the same points in the axes. To unpin an object,
right-click it and select Unpin.

See Also
annotation

Related Examples
• “Add Text to Graph Interactively” on page 4-27

4 Annotating Graphs

4-26

Add Text to Graph Interactively
In this section...
“Add Title and Axis Labels” on page 4-27
“Add Legend” on page 4-29
“Add Annotations to Graph” on page 4-31

This example shows how to interactively add a title, legend, axis labels, and other text to
a graph using the figure menus and plot tools.

Add Title and Axis Labels
Create a simple line plot.

x = linspace(1,10);
plot(x,sin(x))

Use the figure Insert menu to add a title and axis labels to the graph. After typing the
text, click anywhere outside the text entry box to apply the text.

 Add Text to Graph Interactively

4-27

To modify the title and axis labels, first enable plot edit mode by clicking the Edit Plot

button on the figure toolbar.

• To change the text, double-click it and type new text.
• To move the text, drag it to a new position.
• To set text properties, such as the color and font style, right-click the text and use the

context menu.
• To set additional properties, use the Property Editor. Select Show Property Editor

from the context menu.

4 Annotating Graphs

4-28

Add Legend
Add a legend to the graph. In the figure, select Insert > Legend.

By default, the legend labels each plotted object with data1, data2, and so on. Change
the legend label by double-clicking the label and retyping a new label. Display special
characters and symbols using TeX markup. For example, use the _ character to display a
subscript. For a list of supported TeX markup, see the text Interpreter property.

 Add Text to Graph Interactively

4-29

Note To display a legend with more than 50 items, use the legend function.

To change the legend location, right-click the legend and set the Location option from
the context menu. For additional location options, or to modify other legend properties,
use the Property Editor. Select View > Property Editor to open the Property Editor.
Then, click the legend to access its properties.

4 Annotating Graphs

4-30

Add Annotations to Graph
Add a text box and a text arrow to the graph using the TextBox and Text Arrow options
from the Insert menu. To add a text box, draw a rectangle and then type the text at the
text cursor. To add a text arrow, draw an arrow from tail to head and type the text at the
text cursor next to the tail.

 Add Text to Graph Interactively

4-31

See Also
legend | title | xlabel | ylabel | zlabel

Related Examples
• “Add Annotations to Graph Interactively” on page 4-24
• “Add Text to Specific Points on Graph” on page 4-2
• “Add Title, Axis Labels, and Legend to Graph” on page 2-13

4 Annotating Graphs

4-32

Align Objects in Graph Using Alignment Tools
This example shows how to align text boxes in a graph using alignment tools.

Plot a line.

plot(1:10)

Add four text box annotations to the graph. In the figure, select Insert > TextBox.
Approximately align the text boxes in a vertical column.

Use Shift + click to select all four text boxes. Align the text boxes into one column. In the
figure, select Tools > Smart Align and Distribute.

 Align Objects in Graph Using Alignment Tools

4-33

For more control over the alignment, use the Align Distribute Tool. Select all four text
boxes again and select Tools > Align Distribute Tool. Set the vertical distribution
between the text boxes to 10 pixels and set the horizontal alignment to left-aligned, and
then click OK.

4 Annotating Graphs

4-34

The text boxes align according to your alignment settings.

 Align Objects in Graph Using Alignment Tools

4-35

See Also
annotation

More About
• “Add Text to Graph Interactively” on page 4-27
• “Add Annotations to Graph Interactively” on page 4-24

4 Annotating Graphs

4-36

Coloring Graphs

• “Creating Colorbars” on page 5-2
• “Change Color Scheme Using a Colormap” on page 5-10
• “How Surface Plot Data Relates to a Colormap” on page 5-16
• “How Image Data Relates to a Colormap” on page 5-23
• “How Patch Data Relates to a Colormap” on page 5-32
• “Control Colormap Limits” on page 5-42
• “Differences Between Colormaps and Truecolor” on page 5-48

5

Creating Colorbars
Colorbars allow you to see the relationship between your data and the colors displayed in
your chart. After you have created a colorbar, you can customize different aspects of its
appearance, such as its location, thickness, and tick labels. For example, this colorbar
shows the relationship between the values of the peaks function and the colors shown in
the plot next to it.

contourf(peaks)
c = colorbar;

5 Coloring Graphs

5-2

The default location of the colorbar is on the right side of the axes. However, you can
move the colorbar to a different location by setting the Location property. In this case,
the 'southoutside' option places the colorbar below the axes.

c.Location = 'southoutside';

You can also change the thickness of the colorbar. The “Position” property controls the
location and size of most graphics objects, including axes and colorbars. Because this
colorbar is horizontal, the fourth value in c.Positon (which corresponds to height)
controls its thickness. Here, the colorbar is narrowed and the axes position is reset so
that there is no overlap with the colorbar.

ax = gca;
axpos = ax.Position;

 Creating Colorbars

5-3

c.Position(4) = 0.5*c.Position(4);
ax.Position = axpos;

Colorbar objects have several properties for modifying the tick spacing and labels. For
example, you can specify that the ticks occur in only three places: -6.5, 0, and 8.

c.Ticks = [-6.5 0 8];

5 Coloring Graphs

5-4

You can change the tick labels to any values. Use a cell array to specify the tick labels.

c.TickLabels = {'Frigid','Freezing','Cold'};

 Creating Colorbars

5-5

You can also use TeX or LaTeX markup. Use the TickLabelInterpreter property to set
the interpreter when you use TeX or LaTeX.

c.TickLabelInterpreter = 'tex';
c.TickLabels = {'-6.5\circ','0\circ','8\circ'};

5 Coloring Graphs

5-6

You can change the limits of the colorbar to focus on a specific region of color. For
example, you can narrow the limits and adjust the tick labels to reflect the new limits. The
resulting colorbar excludes the dark blue shades that used to be on the left and the yellow
shades that used to be on the right.

c.Limits = [-4 4];
c.Ticks = [-4 0 4];
c.TickLabels = {'-4\circ','0\circ','4\circ'};

 Creating Colorbars

5-7

Add a descriptive label to the colorbar using the Label property. Because the Label
property must be specified as a Text object, you must set the String property of the
Text object first. Then you can assign that Text object to the Label property. The
following command accomplishes both tasks in one step.

c.Label.String = 'Degrees Celsius';

5 Coloring Graphs

5-8

See Also
Functions
colorbar | pcolor

Properties
Colorbar

 See Also

5-9

Change Color Scheme Using a Colormap
MATLAB® uses a default color scheme when it displays visualizations such as surface
plots. You can change the color scheme by specifying a colormap. For example, here is a
surface plot with the default color scheme.

f = figure;
surf(peaks);

The following command changes the colormap of the current figure to winter, one of
several predefined colormaps (see “Colormaps” for a full list).

colormap winter;

5 Coloring Graphs

5-10

If you have multiple figures open, pass the Figure object as the first argument to the
colormap function.

colormap(f,jet);

 Change Color Scheme Using a Colormap

5-11

Each predefined colormap provides a palette of 64 colors by default. However, you can
specify any number of colors by passing a whole number to the predefined colormap
function. For example, here is the jet colormap with five entries.

c = jet(5);
colormap(c);

5 Coloring Graphs

5-12

You can also create your own colormap as an m-by-3 array. Each row in the array contains
the red, green, and blue intensities of a different color. The intensities are in the range
[0,1]. Here is a simple colormap that contains three entries.

mycolors = [1 0 0; 1 1 0; 0 0 1];
colormap(mycolors);

 Change Color Scheme Using a Colormap

5-13

If you are working with subplots, you can assign a different colormap to each subplot by
passing the axes to the colormap function.

ax1 = subplot(1,2,1);
surf(peaks);
shading interp;
colormap(parula(10));
ax2 = subplot(1,2,2);
surf(peaks);
shading interp;
colormap(ax2,cool(10));

5 Coloring Graphs

5-14

See Also

Related Examples
• “How Surface Plot Data Relates to a Colormap” on page 5-16

 See Also

5-15

How Surface Plot Data Relates to a Colormap
When you create surface plots using functions such as surf or mesh, you can customize
the color scheme by calling the colormap function. If you want further control over the
appearance, you can change the direction or pattern of the colors across the surface. This
customization requires changing values in an array that controls the relationship between
the surface and the colormap.

Relationship Between the Surface and the Colormap
The CData property of a Surface object contains an indexing array C that associates
specific locations in your plot with colors in the colormap. C has the following relationship
to the surface z = f(x,y):

• C is the same size as Z, where Z is the array containing the values of f(x,y) at each grid
point on the surface.

• The value at C(i,j) controls the color at the grid location (i,j) on the surface.
• By default, C is equal to Z, which corresponds to colors varying with altitude.
• By default, the range of C maps linearly to the number of rows in the colormap array.

For example, a 3-by-3 sampling of Z = X + Y has the following relationship to a
colormap containing N entries.

5 Coloring Graphs

5-16

Notice that the smallest value (-2) maps to the first row in the colormap. The largest
value (2) maps to the last row in the colormap. The intermediate values in C map linearly
to the intermediate rows in the colormap.

Note The preceding surface plot shows how colors are assigned to vertices on the
surface. However, the default behavior is to fill the patch faces with solid color. That solid
color is based on the colors assigned to the surrounding vertices. For more information,
see the FaceColor property description.

Change the Direction or Pattern of Colors
When using the default value of C=Z, the colors vary with changes in Z.

[X,Y] = meshgrid(-10:10);
Z = X + Y;
s = surf(X,Y,Z);
xlabel('X');
ylabel('Y');
zlabel('Z');

 How Surface Plot Data Relates to a Colormap

5-17

You can change this behavior by specifying C when you create the surface. For example,
the colors on this surface vary with X.

C = X;
s = surf(X,Y,Z,C);
xlabel('X');
ylabel('Y');
zlabel('Z');

5 Coloring Graphs

5-18

Alternatively, you can set the CData property directly. This command makes the colors
vary with Y.

s.CData = Y;

 How Surface Plot Data Relates to a Colormap

5-19

The colors do not need to follow changes in a single dimension. In fact, CData can be any
array that is the same size as Z. For example, the colors on this plane follow the shape of
a sinc function.

R = sqrt(X.^2 + Y.^2) + eps;
s.CData = sin(R)./(R);

5 Coloring Graphs

5-20

See Also
Functions
mesh | surf

Properties
Chart Surface

 See Also

5-21

Related Examples
• “Change Color Scheme Using a Colormap” on page 5-10
• “Differences Between Colormaps and Truecolor” on page 5-48

5 Coloring Graphs

5-22

How Image Data Relates to a Colormap
When you display images using the image function, you can control how the range of
pixel values maps to the range of the colormap. For example, here is a 5-by-5 magic
square displayed as an image using the default colormap.

A = magic(5)

A = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

im = image(A);
axis off
colorbar

 How Image Data Relates to a Colormap

5-23

A contains values between 1 and 25. MATLAB treats those values as indices into the
colormap, which has 64 entries. Thus, all the pixels in the preceding image map to the
first 25 entries in the colormap (roughly the blue region of the colorbar).

5 Coloring Graphs

5-24

You can control this mapping with the CDataMapping property of the Image object. The
default behavior shown in the preceding diagram corresponds to the 'direct' option for
this property. Direct mapping is useful when you are displaying images (such as GIF
images) that contain their own colormap. However, if your image represents
measurements of some physical unit (e.g., meters or degrees) then set the
CDataMapping property to 'scaled'. Scaled mapping uses the full range of colors, and
it allows you to visualize the relative differences in your data.

im.CDataMapping = 'scaled';

 How Image Data Relates to a Colormap

5-25

The 'scaled' option maps the smallest value in A to the first entry in the colormap, and
maps largest value in A maps to the last entry in the colormap. All intermediate values of
A are linearly scaled to the colormap.

5 Coloring Graphs

5-26

As an alternative to setting the CDataMapping property to 'scaled', you can call the
imagesc function to get the same effect.

imagesc(A);
axis off
colorbar

 How Image Data Relates to a Colormap

5-27

If you change the colormap, the values in A are scaled to the new colormap.

colormap(gray);

5 Coloring Graphs

5-28

Scaled mapping is also useful for displaying pictorial images that have no colormap, or
when you want to change the colormap for a pictorial image. The following commands
display an image using the gray colormap, which is different than the original colormap
that is stored with this image.

load clown
image(X,'CDataMapping','scaled');
colormap(gray);
axis off
colorbar

 How Image Data Relates to a Colormap

5-29

See Also
Functions
image | imagesc

Properties
Image

Related Examples
• “Image Types” on page 7-5

5 Coloring Graphs

5-30

• “Differences Between Colormaps and Truecolor” on page 5-48

 See Also

5-31

How Patch Data Relates to a Colormap
When you create graphics that use Patch objects, you can control the overall color
scheme by calling the colormap function. You can also control the relationship between
the colormap and your patch by:

• Assigning specific colors to the faces
• Assigning specific colors to the vertices surrounding each face

The way you control these relationships depends on how you specify your patches: as x-,
y-, and z-coordinates, or as face-vertex data.

Relationship of the Colormap to x-, y-, and z-Coordinate
Arrays
If you create a Patch object using x-, y-, and z-coordinate arrays, the CData property of
the Patch object contains an indexing array C. This array controls the relationship
between the colormap and your patch. To assign colors to the faces, specify C as an array
with these characteristics:

• C is an n-by-1 array, where n is the number of faces.
• The value at C(i) controls the color for face i.

Here is an example of C and its relationship to the colormap and three faces. The value of
C(i) controls the color for the face defined by vertices (X(i,:), Y(i,:)).

5 Coloring Graphs

5-32

The smallest value in C is 0. It maps to the first row in the colormap. The largest value
in C is 1, and it maps to the last row in the colormap. Intermediate values of C map
linearly to the intermediate rows in the colormap. In this case, C(2) maps to the color
located about two-thirds from the beginning of the colormap. This code creates the Patch
object described in the preceding illustration.

X = [0 0 5; 0 0 5; 4 4 9];
Y = [0 4 0; 3 7 3; 0 4 0];
C = [0; .6667; 1];
p = patch(X,Y,C);
colorbar

 How Patch Data Relates to a Colormap

5-33

To assign colors to the vertices, specify C as an array with these characteristics:

• C is an m-by-n array, where m is the number of vertices per face, and n is the number
of faces.

• The value at C(i,j) controls the color at vertex i of face j.

Here is an example of C and its relationship to the colormap and six vertices. The value of
C(i,j) controls the color for the vertex at (X(i,j), Y(i,j)).

5 Coloring Graphs

5-34

As with patch faces, MATLAB scales the values in C to the number of rows in the
colormap. In this case, the smallest value is C(2,2)=1, and it maps to the first row in the
colormap. The largest value is C(3,1)=6, and it maps to the last row in the colormap.

This code creates the Patch object described in the preceding illustration. The
FaceColor property is set to 'interp' to make the vertex colors blend across each
face.

clf
X = [0 3; 0 3; 5 6];
Y = [0 3; 5 6; 0 3];
C = [5 4; 2 0; 6 3];
p = patch(X,Y,C,'FaceColor','interp');
colorbar

 How Patch Data Relates to a Colormap

5-35

Relationship of the Colormap to Face-Vertex Data
If you create patches using face-vertex data, the FaceVertexCData property of the
Patch object contains an indexing array C. This array controls the relationship between
the colormap and your patch.

To assign colors to the faces, specify C as an array with these characteristics:

• C is an n-by-1 array, where n is the number of faces.
• The value at C(i) controls the color for face i.

Here is an example of C and its relationship to the colormap and three faces.

5 Coloring Graphs

5-36

The smallest value in C is 0, and it maps to the first row in the colormap. The largest
value in C is 1, and it maps to the last value in the colormap. Intermediate values of C map
linearly to the intermediate rows in the colormap. In this case, C(2) maps to the color
located about two-thirds from the bottom of the colormap.

This code creates the Patch object described in the preceding illustration. The
FaceColor property is set to 'flat' to display the colormap colors instead of the
default color, which is black.

clf
vertices = [0 0; 0 3; 4 0; 0 4; 0 7; 4 4; 5 0; 5 3; 9 0];
faces = [1 2 3; 4 5 6; 7 8 9];
C = [0; 0.6667; 1];
p = patch('Faces',faces,'Vertices',vertices,'FaceVertexCData',C);
p.FaceColor = 'flat';
colorbar

 How Patch Data Relates to a Colormap

5-37

To assign colors to the vertices, specify the FaceVertexCData property of the Patch
object as array C with these characteristics:

• C is an n-by-1 array, where n is the number of vertices.
• The value at C(i) controls the color at vertex i.

Here is an example of C and its relationship to the colormap and six vertices.

5 Coloring Graphs

5-38

As with patch faces, MATLAB scales the values in C to the number of rows in the
colormap. In this case, the smallest value is C(2)=1, and it maps to the first row in the
colormap. The largest value is C(6)=6, and it maps to the last row in the colormap.

This code creates the Patch object described in the preceding illustration. The
FaceColor property is set to 'interp' to make the vertex colors blend across each
face.

clf
vertices = [0 0; 0 5; 5 0; 3 3; 3 6; 6 3];
faces = [1 2 3; 4 5 6];
C = [5; 1; 4; 3; 2; 6];
p = patch('Faces',faces,'Vertices',vertices,'FaceVertexCData',C);
p.FaceColor = 'interp';
colorbar

 How Patch Data Relates to a Colormap

5-39

See Also
Functions
patch

Properties
Patch

Related Examples
• “Change Color Scheme Using a Colormap” on page 5-10

5 Coloring Graphs

5-40

• “Differences Between Colormaps and Truecolor” on page 5-48

 See Also

5-41

Control Colormap Limits
For many types of visualizations you create, MATLAB maps the full range of your data to
the colormap by default. The smallest value in your data maps to the first row in the
colormap, and the largest value maps to the last row in the colormap. All intermediate
values map linearly to the intermediate rows of the colormap.

This default mapping is useful in most cases, but you can perform the mapping over any
range you choose, even if the range you choose is different than the range of your data.
Choosing a different mapping range allows you to:

• See where your data is at or beyond the limits of that range.
• See where your data lies within that range.

Consider the surface Z = X + Y, where –10 ≤ x ≤ 10 and –10 ≤ y ≤ 10.

[X,Y] = meshgrid(-10:10);
Z = X + Y;
s = surf(X,Y,Z);
xlabel('X');
ylabel('Y');
zlabel('Z = C');
colorbar

5 Coloring Graphs

5-42

“How Surface Plot Data Relates to a Colormap” on page 5-16 describes the properties
that control the color in this presentation. Essentially, the CData property of the Surface
object contains an array C that associates each grid point on the surface to a color in the
colormap. By default, C is equal to Z, where Z is the array containing the values of z =
f(x,y) at the grid points. Thus, the colors vary with changes in Z.

The mapping range is controlled by the CLim property of the Axes object. This property
contains a two-element vector of the form [cmin cmax]. The default value of cmin is
equal to the smallest value of C, and the default value of cmax is the largest value of C. In
this case, CLim is [-20 20] because the range of C reflects the range of Z.

 Control Colormap Limits

5-43

Changing CLim to [0 20] clips all the values at or below 0 to the first color in the
colormap.

This command changes the CLim property to [0 20]. Notice that the lower half of the
surface maps to the first color in the colormap (dark blue). This clipping occurs because C
(which is equal to Z) is less than or equal to zero at those points.

caxis([0 20]);

5 Coloring Graphs

5-44

You can also widen the mapping range to see where your data lies within that range. For
example, changing the range to [-60 20] results in a surface that only uses half of the
colors. The lower half of the colormap corresponds to values that are outside the range of
C, so those colors are not represented on the surface.

caxis([-60 20]);

 Control Colormap Limits

5-45

Note You can set the CLim property for surface plots, patches, images, or any graphics
object that uses a colormap. However, this property only affects graphics objects that
have the CDataMapping property set to 'scaled'. If the CDataMapping property is set
to 'direct', then all values of C index directly into the colormap without any scaling.
Any values of C that are less than 1 are clipped to the first color in the colormap. Any
values of C that are greater than the length of the colormap are clipped to the last color in
the colormap.

See Also
caxis | colorbar | colormap | surf

5 Coloring Graphs

5-46

Related Examples
• “Change Color Scheme Using a Colormap” on page 5-10
• “How Surface Plot Data Relates to a Colormap” on page 5-16
• “Creating Colorbars” on page 5-2

 See Also

5-47

Differences Between Colormaps and Truecolor
Many graphics objects, such as surfaces, patches, and images, support two different
techniques for specifying color: colormaps (which use indexed color) and truecolor. Each
technique involves a different workflow and has a different impact on your visual
presentation.

Differences in Workflow
A colormap is an m-by-3 array in which each row specifies an RGB triplet. To use a
colormap in a graphical presentation, you assign an index to each location in your
graphic. Each index addresses a row in the colormap to display a color at the specified
location in the graphic. By contrast, using truecolor involves specifying an RGB triplet at
every location in your graphic.

Here are some points to consider when deciding which to technique to use:

• Truecolor is more direct. If you want to assign specific red, green, and blue values to
specific locations in your graphic, it is usually easier to do it using truecolor.

• Making changes in a region of the color palette is easier to do in a colormap. For
example, if you want to brighten the transition from blue to green in a gradient, it is
easier to edit those rows in the colormap than it is to edit the colors at the individual
locations in your graphic.

• The format of your data might be more appropriate for one of the workflows. For
example, many compressed GIF images are stored using indexed color.

Both coloring techniques use a color array C to specify the color information. The shape of
C depends on the type of graphics object and the coloring method you choose. This table
summarizes the differences.

5 Coloring Graphs

5-48

Type of Graphics
Object

Property that
Contains Color
Array C

Shape of C for
Indexed Color

Shape of C for
Truecolor

Surface CData C is an m-by-n array
that is the same size
as the z-coordinate
array. The value at
C(i,j) specifies the
colormap index for
Z(i,j).

C is an m-by-n-by-3
array, where
C(:,:,i) the same
size as the z-
coordinate array.
C(i,j,1) specifies
the red component
for Z(i,j).
C(i,j,2) specifies
the green component
for Z(i,j).
C(i,j,3) specifies
the blue component
for Z(i,j).

Image CData C is an m-by-n array
for an m-by-n image.
The value at C(i,j)
specifies the
colormap index for
pixel (i,j).

C is an m-by-n-by-3
array for an m-by-n
image.
C(i,j,1) specifies
the red component
for pixel (i,j).
C(i,j,2) specifies
the green component
for pixel (i,j).
C(i,j,3) specifies
the blue component
for pixel (i,j).

 Differences Between Colormaps and Truecolor

5-49

Type of Graphics
Object

Property that
Contains Color
Array C

Shape of C for
Indexed Color

Shape of C for
Truecolor

Patch (x, y, z) CData To color patch faces,
C is a 1-by-m array
for m patch faces.
C(i) specifies the
colormap index for
face i.
To color patch
vertices, C is an m-
by-n array, where m
is the number of
vertices per face, and
n is the number of
faces. C(i,j)
specifies the
colormap index for
vertex i of face j.

To color patch faces,
C is an m-by-3 array
for m patch faces.
C(i,:) specifies the
red, green, and blue
values for face i.
To color patch
vertices, C is an n-
by-3 array, where n is
the total number of
vertices. C(i,:)
specifies the red,
green, and blue
values for vertex i.

Patch (face-vertex
data)

FaceVertexCData To color patch faces,
C is a 1-by-m array
for m patch faces.
C(i) specifies the
colormap index for
face i.
To color patch
vertices, C is a 1-by-n
array, where n is the
total number of
vertices. C(i)
specifies the
colormap index for
vertex i.

To color patch faces,
C is an m-by-3 array
for m patch faces.
C(i,:) specifies the
red, green, and blue
values for face i.
To color patch
vertices, C is an n-
by-3 array, where n is
the total number of
vertices. C(i,:)
specifies the red,
green, and blue
values for vertex i.

Differences in Visual Presentation
Colormaps offer a palette of m colors, where m is the length of the colormap. By contrast,
truecolor offers a palette of 256 × 256 × 256 ≈ 1.68 million colors.

5 Coloring Graphs

5-50

Consider these factors as you decide how large your color palette needs to be:

• Smaller color palettes are the most economical way to fill large regions with solid
color. They are also useful in visualizing contours of surfaces.

• Larger color palettes are better for showing subtle transitions and smooth color
gradients.

Interpolating vertex colors across a patch face is one situation in which the differences
between indexed color and truecolor are more noticeable. The following two patches
illustrate an extreme case. The patch on the left uses a small colormap, whereas the patch
on the right uses truecolor.

 Differences Between Colormaps and Truecolor

5-51

If you are concerned about the limited palette of a colormap, you can add more colors to
it. “Change Color Scheme Using a Colormap” on page 5-10 shows how to use a colormap
with a specific number of colors.

See Also

Related Examples
• “Image Types” on page 7-5
• “Change Color Scheme Using a Colormap” on page 5-10
• “How Surface Plot Data Relates to a Colormap” on page 5-16
• “How Image Data Relates to a Colormap” on page 5-23
• “How Patch Data Relates to a Colormap” on page 5-32

5 Coloring Graphs

5-52

Creating Specialized Plots

• “Types of Bar Graphs” on page 6-3
• “Modify Baseline of Bar Graph” on page 6-10
• “Overlay Bar Graphs” on page 6-13
• “Combine Line and Bar Charts Using Two y-Axes” on page 6-17
• “Color 3-D Bars by Height” on page 6-21
• “Compare Data Sets Using Overlayed Area Graphs” on page 6-24
• “Offset Pie Slice with Greatest Contribution” on page 6-29
• “Add Legend to Pie Chart” on page 6-31
• “Label Pie Chart With Text and Percentages” on page 6-34
• “Data Cursors with Histograms” on page 6-42
• “Color Analysis with Bivariate Histogram” on page 6-44
• “Control Categorical Histogram Display” on page 6-51
• “Replace Discouraged Instances of hist and histc” on page 6-59
• “Combine Line and Stem Plots” on page 6-70
• “Overlay Stairstep Plot and Line Plot” on page 6-73
• “Combine Contour Plot and Quiver Plot” on page 6-76
• “Projectile Path Over Time” on page 6-78
• “Label Contour Plot Levels” on page 6-80
• “Change Fill Colors for Contour Plot” on page 6-82
• “Highlight Specific Contour Levels” on page 6-84
• “Create Word Cloud from String Arrays” on page 6-87
• “Animation Techniques” on page 6-90
• “Trace Marker Along Line” on page 6-92
• “Move Group of Objects Along Line” on page 6-96
• “Animate Graphics Object” on page 6-100
• “Line Animations” on page 6-104

6

• “Record Animation for Playback” on page 6-107
• “Customize Polar Axes Grid Lines and Appearance” on page 6-111
• “Compass Labels on Polar Axes” on page 6-120
• “Create Line Plot with Markers” on page 6-123
• “Geographic Bubble Charts Overview” on page 6-133
• “Deploy Geographic Bubble Charts” on page 6-145
• “Use Geographic Bubble Chart Properties” on page 6-146
• “Access Basemaps in MATLAB” on page 6-157
• “Troubleshoot Geographic Bubble Chart Basemap Connection” on page 6-159
• “Create Geographic Bubble Chart from Tabular Data” on page 6-161

6 Creating Specialized Plots

6-2

Types of Bar Graphs
Bar graphs are useful for viewing results over a period of time, comparing results from
different data sets, and showing how individual elements contribute to an aggregate
amount.

By default, bar graphs represents each element in a vector or matrix as one bar, such that
the bar height is proportional to the element value.

2-D Bar Graph

The bar function distributes bars along the x-axis. Elements in the same row of a matrix
are grouped together. For example, if a matrix has five rows and three columns, then bar
displays five groups of three bars along the x-axis. The first cluster of bars represents the
elements in the first row of Y.

Y = [5,2,1
 8,7,3
 9,8,6
 5,5,5
 4,3,2];
figure
bar(Y)

 Types of Bar Graphs

6-3

To stack the elements in a row, specify the stacked option for the bar function.

figure
bar(Y,'stacked')

6 Creating Specialized Plots

6-4

2-D Horizontal Bar Graph

The barh function distributes bars along the y-axis. Elements in the same row of a matrix
are grouped together.

Y = [5,2,1
 8,7,3
 9,8,6
 5,5,5
 4,3,2];
figure
barh(Y)

 Types of Bar Graphs

6-5

3-D Bar Graph

The bar3 function draws each element as a separate 3-D block and distributes the
elements of each column along the y-axis.

Y = [5,2,1
 8,7,3
 9,8,6
 5,5,5
 4,3,2];
figure
bar3(Y)

6 Creating Specialized Plots

6-6

To stack the elements in a row, specify the stacked option for the bar3 function.

figure
bar3(Y,'stacked')

 Types of Bar Graphs

6-7

3-D Horizontal Bar Graph

The bar3h function draws each element as a separate 3-D block and distributes the
elements of each column along the z-axis.

Y = [5,2,1
 8,7,3
 9,8,6
 5,5,5
 4,3,2];
figure
bar3h(Y)

6 Creating Specialized Plots

6-8

See Also
bar | bar3 | bar3h | barh

 See Also

6-9

Modify Baseline of Bar Graph
This example shows how to modify properties of the baseline of a bar graph.

Create a bar graph of a four-column matrix. The bar function creates a bar series for
each column of the matrix. Return the four bar series as b.

Y = [5, 4, 3, 5;
 3, 6, 3, 1;
 4, 3, 5, 4];
b = bar(Y);

All bar series in a graph share the same baseline. Change the value of the baseline to 2 by
setting the BaseValue property for any of the bar series.

6 Creating Specialized Plots

6-10

Note: Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead, such as set(b(1),'BaseValue',2).

b(1).BaseValue = 2;

Change the baseline to a thick, red dotted line.

b(1).BaseLine.LineStyle = ':';
b(1).BaseLine.Color = 'red';
b(1).BaseLine.LineWidth = 2;

 Modify Baseline of Bar Graph

6-11

See Also
bar | barh

6 Creating Specialized Plots

6-12

Overlay Bar Graphs
This example shows how to overlay two bar graphs and specify the bar colors and widths.
Then, it shows how to add a legend, display the grid lines, and specify the tick labels.

Create a bar graph. Set the bar width to 0.5 so that the bars use 50% of the available
space. Specify the bar color by setting the FaceColor property to an RGB color value.

x = [1 2 3 4 5];
temp_high = [37 39 46 56 67];
w1 = 0.5;
bar(x,temp_high,w1,'FaceColor',[0.2 0.2 0.5])

 Overlay Bar Graphs

6-13

Plot a second bar graph over the first bar graph. Use the hold function to retain the first
graph. Set the bar width to .25 so that the bars use 25% of the available space. Specify a
different RGB color value for the bar color.

temp_low = [22 24 32 41 50];
w2 = .25;
hold on
bar(x,temp_low,w2,'FaceColor',[0 0.7 0.7])
hold off

Add grid lines, a y-axis label, and a legend in the upper left corner. Specify the legend
descriptions in the order that you create the graphs.

6 Creating Specialized Plots

6-14

grid on
ylabel('Temperature (\circF)')
legend({'Average High','Average Low'},'Location','northwest')

Specify the x-axis tick labels by setting the XTick and XTickLabel properties of the axes
object. The XTick property specifies tick value locations along the x-axis. The
XTickLabel property specifies the text to use at each tick value. Rotate the labels using
the XTickLabelRotation property. Starting in R2014b, you can use dot notation to set
properties. If you are using an earlier release, use the set instead.

ax = gca;
ax.XTick = [1 2 3 4 5];
ax.XTickLabels = {'January','February','March','April','May'};
ax.XTickLabelRotation = 45;

 Overlay Bar Graphs

6-15

See Also
bar | barh | hold

6 Creating Specialized Plots

6-16

Combine Line and Bar Charts Using Two y-Axes
This example shows how to combine a line chart and a bar chart using two different y-
axes. It also shows how to customize the line and bars.

Create a chart that has two y-axes using yyaxis. Graphics functions target the active
side of the chart. Control the active side using yyaxis. Plot a bar chart using the left y-
axis. Plot a line chart using the right y-axis. Assign the bar series object and the chart line
object to variables.

days = 0:5:35;
conc = [515 420 370 250 135 120 60 20];
temp = [29 23 27 25 20 23 23 17];

yyaxis left
b = bar(days,temp);
yyaxis right
p = plot(days,conc);

 Combine Line and Bar Charts Using Two y-Axes

6-17

Add a title and axis labels to the chart.

title('Temperature and Concentration Data')
xlabel('Day')
yyaxis left
ylabel('Temperature (\circC)')
yyaxis right
ylabel('Concentration')

6 Creating Specialized Plots

6-18

Change the width of the chart line and change the bar colors.

p.LineWidth = 3;
b.FaceColor = [0 0.447 0.741];

 Combine Line and Bar Charts Using Two y-Axes

6-19

See Also
Functions
bar | hold | plot | title | xlabel | ylabel | yyaxis

Properties
Bar | Chart Line

6 Creating Specialized Plots

6-20

Color 3-D Bars by Height
This example shows how to modify a 3-D bar plot by coloring each bar according to its
height.

Create a 3-D bar graph of data from the magic function. Return the surface objects used
to create the bar graph in array b. Add a colorbar to the graph.

Z = magic(5);
b = bar3(Z);
colorbar

 Color 3-D Bars by Height

6-21

For each surface object, get the array of z-coordinates from the ZData property. Use the
array to set the CData property, which defines the vertex colors. Interpolate the face
colors by setting the FaceColor properties of the surface objects to 'interp'.

Note: Starting in R2014b, you can use dot notation to query and set properties. If you are
using an earlier release, use the get and set functions instead, such as zdata =
get(b(k),'ZData').

for k = 1:length(b)
 zdata = b(k).ZData;
 b(k).CData = zdata;
 b(k).FaceColor = 'interp';
end

6 Creating Specialized Plots

6-22

The height of each bar determines its color. You can estimate the bar heights by
comparing the bar colors to the colorbar.

See Also
bar3 | colorbar

 See Also

6-23

Compare Data Sets Using Overlayed Area Graphs
This example shows how to compare two data sets by overlaying their area graphs.

Overlay Two Area Graphs

Create the sales and expenses data from the years 2004 to 2008.

years = 2004:2008;
sales = [51.6 82.4 90.8 59.1 47.0];
expenses = [19.3 34.2 61.4 50.5 29.4];

Display sales and expenses as two separate area graphs in the same axes. First, plot an
area graph of sales. Change the color of the area graph by setting the FaceColor and
EdgeColor properties using RGB triplet color values.

area(years,sales,'FaceColor',[0.5 0.9 0.6],'EdgeColor',[0 0.5 0.1])

6 Creating Specialized Plots

6-24

Use the hold command to prevent a new graph from replacing the existing graph. Plot a
second area graph of expenses. Then, set the hold state back to off.

hold on
area(years,expenses,'FaceColor',[0.7 0.7 0.7],'EdgeColor','k')
hold off

 Compare Data Sets Using Overlayed Area Graphs

6-25

Add Grid Lines

Set the tick marks along the x-axis to correspond to whole years. Draw a grid line for
each tick mark. Display the grid lines on top of the area graphs by setting the Layer
property. Starting in R2014b, you can use dot notation to set properties. If you are using
an earlier release, use the set function instead.

ax = gca; % current axes
ax.XTick = years;
ax.XGrid = 'on';
ax.Layer = 'top';

6 Creating Specialized Plots

6-26

Add Title, Axis Labels, and Legend

Give the graph a title and add axis labels. Add a legend to the graph to indicate the areas
of profits and expenses.

title('Profit Margin for 2004 to 2008')
xlabel('Years')
ylabel('Expenses + Profits = Sales in 1000s')
legend('Profits','Expenses')

 Compare Data Sets Using Overlayed Area Graphs

6-27

See Also
area | gca | hold | legend

6 Creating Specialized Plots

6-28

Offset Pie Slice with Greatest Contribution
This example shows how to create a pie graph and automatically offset the pie slice with
the greatest contribution.

Set up a three-column array, X, so that each column contains yearly sales data for a
specific product over a 5-year period.

X = [19.3, 22.1, 51.6
 34.2, 70.3, 82.4
 61.4, 82.9, 90.8
 50.5, 54.9, 59.1
 29.4, 36.3, 47.0];

Calculate the total sales for each product over the 5-year period by taking the sum of
each column. Store the results in product_totals.

product_totals = sum(X);

Use the max function to find the largest element in product_totals and return the
index of this element, ind.

[c,ind] = max(product_totals);

Use the pie function input argument, explode, to offset a pie slice. The explode
argument is a vector of zero and nonzero values where the nonzero values indicate the
slices to offset. Initialize explode as a three-element vector of zeros.

explode = zeros(1,3);

Use the index of the maximum element in product_totals to set the corresponding
explode element to 1.

explode(ind) = 1;

Create a pie chart of the sales totals for each product and offset the pie slice for the
product with the largest total sales.

figure
pie(product_totals,explode)
title('Sales Contributions of Three Products')

 Offset Pie Slice with Greatest Contribution

6-29

See Also
max | pie | zeros

Related Examples
• “Add Legend to Pie Chart” on page 6-31

6 Creating Specialized Plots

6-30

Add Legend to Pie Chart
This example shows how to add a legend to a pie chart that displays a description for
each slice.

Define x and create a pie chart.

x = [1,2,3];
figure
pie(x)

Specify the description for each pie slice in the cell array labels.

labels = {'Product A','Product B','Product C'};

 Add Legend to Pie Chart

6-31

Display a horizontal legend below the pie chart. Pass the descriptions contained in
labels to the legend function. Set the legend's Location property to
'southoutside' and its Orientation property to 'horizontal'.

legend(labels,'Location','southoutside','Orientation','horizontal')

The graph contains a pie chart and a horizontal legend with descriptions for each pie
slice.

See Also
legend | pie

6 Creating Specialized Plots

6-32

Related Examples
• “Offset Pie Slice with Greatest Contribution” on page 6-29

 See Also

6-33

Label Pie Chart With Text and Percentages
This example shows how to label slices on a pie chart so that the labels contain custom
text and the precalculated percent values for each slice.

Create Pie Chart
Create a pie chart. Specify an output argument, h, to contain the text and patch objects
created by the pie function.

x = [1,2,3];

figure
h = pie(x);

6 Creating Specialized Plots

6-34

The pie function creates one text object and one patch object for each pie slice. By
default, MATLAB labels each pie slice with the percentage of the whole that slice
represents.

Note To specify simple text labels, pass the labels directly to the pie function. For
example, pie(x,{'Item A','Item B','Item C'}).

Store Precalculated Percent Values
Extract the three text objects from h and store them in array hText. Get the percent
contributions for each pie slice from the String properties of the text objects.

 Label Pie Chart With Text and Percentages

6-35

hText = findobj(h,'Type','text'); % text object handles
percentValues = get(hText,'String'); % percent values

Combine Percent Values and Additional Text
Specify the text in the cell array txt. Then, concatenate the text with the associated
percent values in the cell array combinedtxt.

txt = {'Item A: ';'Item B: ';'Item C: '}; % strings
combinedtxt = strcat(txt,percentValues); % strings and percent values

Before updating the labels, store the text Extent property values for the current labels.
The extent values give the width and height of the rectangle that encloses the current
labels. You use these values to adjust the position of the new labels.

oldExtents_cell = get(hText,'Extent'); % cell array

6 Creating Specialized Plots

6-36

oldExtents = cell2mat(oldExtents_cell); % numeric array

Change the labels by setting the String properties of the text objects to combinedtxt.

Note Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead.

hText(1).String = combinedtxt(1);
hText(2).String = combinedtxt(2);
hText(3).String = combinedtxt(3);

 Label Pie Chart With Text and Percentages

6-37

Determine Horizontal Distance to Move Each Label
Move each label so that it does not overlap the pie chart. First, get the updated extent
values for the new labels from the Extent properties. Use the new and old extent values
to find the change in width for each label.

newExtents_cell = get(hText,'Extent'); % cell array

6 Creating Specialized Plots

6-38

newExtents = cell2mat(newExtents_cell); % numeric array
width_change = newExtents(:,3)-oldExtents(:,3);

Use the change in width to calculate the horizontal distance to move each label. Store the
calculated offsets in offset.

signValues = sign(oldExtents(:,1));
offset = signValues.*(width_change/2);

Position New Label
The Position property of each text object contains a three-element vector, [x,y,z],
that specifies the location of the label in three-dimensions. Get the current label positions

 Label Pie Chart With Text and Percentages

6-39

and move each label to the left or the right by adding the calculated offset to its
horizontal position. Then, set the Position properties of the text objects to the new
values.

textPositions_cell = get(hText,{'Position'}); % cell array
textPositions = cell2mat(textPositions_cell); % numeric array
textPositions(:,1) = textPositions(:,1) + offset; % add offset

hText(1).Position = textPositions(1,:);
hText(2).Position = textPositions(2,:);
hText(3).Position = textPositions(3,:);

The labels for each pie slice contain custom text with the calculated percentages and do
not overlap the pie chart.

6 Creating Specialized Plots

6-40

See Also
cell2mat | findobj | pie

Related Examples
• “Add Legend to Pie Chart” on page 6-31

 See Also

6-41

Data Cursors with Histograms

When you use the Data Cursor tool on a histogram plot, it customizes the data tips it
displays in an appropriate way. Instead of providing x-, y-,z- coordinates, the datatips
display the following information:

• Number of observations falling into the selected bin
• The lower and upper x values for the bin

For example, The following figures show a line plot and a histogram of count.dat, a data
set that contains three columns, giving hourly traffic counts at three different locations.
The plots depict the sum the values over the locations. Each graph displays two datatips,
but the datatips in the right-hand plot give information specific to histograms.

load count.dat
subplot(1,2,1);
plot(count(:))
subplot(1,2,2);
histogram(count(:),5)
datacursormode on

Click to place a datatip or drag an existing one to a new location. You can add new
datatips to a plot by right-clicking, selecting Create new datatip, and clicking the graph
where you want to put it.

6 Creating Specialized Plots

6-42

When you add a datatip to a histogram, you can move the datatip to any other bar by
clicking inside that bar. If you use the cursor keys to shift the datatip back or forth across
the graph, the datatip moves to the preceding or succeeding bar.

 Data Cursors with Histograms

6-43

Color Analysis with Bivariate Histogram
This example shows how to adjust the color scale of a bivariate histogram plot to reveal
additional details about the bins.

Load the image peppers.png, which is a color photo of several types of peppers and
other vegetables. The unsigned 8-bit integer array rgb contains the image data.

rgb = imread('peppers.png');
imshow(rgb)

Plot a bivariate histogram of the red and green RGB values for each pixel to visualize the
color distribution.

6 Creating Specialized Plots

6-44

r = rgb(:,:,1);
g = rgb(:,:,2);
b = rgb(:,:,3);
histogram2(r,g,'DisplayStyle','tile','ShowEmptyBins','on', ...
 'XBinLimits',[0 255],'YBinLimits',[0 255]);
axis equal
colorbar
xlabel('Red Values')
ylabel('Green Values')
title('Green vs. Red Pixel Components')

The histogram is heavily weighted towards the bottom of the color scale because there
are a few bins with very large counts. This results in most of the bins displaying as the

 Color Analysis with Bivariate Histogram

6-45

first color in the colormap, blue. Without additional detail it is hard to draw any
conclusions about which color is more dominant.

To view more detail, rescale the histogram color scale by setting the CLim property of the
axes to have a range between 0 and 500. The result is that the histogram bins whose
count is 500 or greater display as the last color in the colormap, yellow. Since most of the
bin counts are within this smaller range, there is greater variation in the color of bins
displayed.

ax = gca;
ax.CLim = [0 500];

Use a similar method to compare the dominance of red vs. blue and green vs. blue.

6 Creating Specialized Plots

6-46

histogram2(r,b,'DisplayStyle','tile','ShowEmptyBins','on',...
 'XBinLimits',[0 255],'YBinLimits',[0 255]);
axis equal
colorbar
xlabel('Red Values')
ylabel('Blue Values')
title('Blue vs. Red Pixel Components')
ax = gca;
ax.CLim = [0 500];

histogram2(g,b,'DisplayStyle','tile','ShowEmptyBins','on',...
 'XBinLimits',[0 255],'YBinLimits',[0 255]);
axis equal
colorbar

 Color Analysis with Bivariate Histogram

6-47

xlabel('Green Values')
ylabel('Blue Values')
title('Green vs. Blue Pixel Components')
ax = gca;
ax.CLim = [0 500];

In each case, blue is the least dominant color signal. Looking at all three histograms, red
appears to be the dominant color.

Confirm the results by creating a color histogram in the RGB color space. All three color
components have spikes for smaller RGB values. However, the values above 100 occur
more frequently in the red component than any other.

6 Creating Specialized Plots

6-48

histogram(r,'BinMethod','integers','FaceColor','r','EdgeAlpha',0,'FaceAlpha',1)
hold on
histogram(g,'BinMethod','integers','FaceColor','g','EdgeAlpha',0,'FaceAlpha',0.7)
histogram(b,'BinMethod','integers','FaceColor','b','EdgeAlpha',0,'FaceAlpha',0.7)
xlabel('RGB value')
ylabel('Frequency')
title('Color histogram in RGB color space')
xlim([0 257])

 Color Analysis with Bivariate Histogram

6-49

See Also
histogram | histogram2

6 Creating Specialized Plots

6-50

Control Categorical Histogram Display
This example shows how to use histogram to effectively view categorical data. You can
use the name-value pairs 'NumDisplayBins', 'DisplayOrder', and 'ShowOthers' to
change the display of a categorical histogram. These options help you to better organize
the data and reduce noise in the plot.

Create Categorical Histogram

The sample file outages.csv contains data representing electric utility outages in the
United States. The file contains six columns: Region, OutageTime, Loss, Customers,
RestorationTime, and Cause.

Read the outages.csv file as a table. Use the 'Format' option to specify the kind of
data each column contains: categorical ('%C'), floating-point numeric ('%f'), or datetime
('%D'). Index into the first few rows of data to see the variables.

data_formats = '%C%D%f%f%D%C';
C = readtable('outages.csv','Format',data_formats);
first_few_rows = C(1:10,:)

first_few_rows=10×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 _________ ________________ ______ __________ ________________ _______________

 SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
 SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
 SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm
 West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
 MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm
 West 2003-06-18 02:49 0 0 2003-06-18 10:54 attack
 West 2004-06-20 14:39 231.29 NaN 2004-06-20 19:16 equipment fault
 West 2002-06-06 19:28 311.86 NaN 2002-06-07 00:51 equipment fault
 NorthEast 2003-07-16 16:23 239.93 49434 2003-07-17 01:12 fire
 MidWest 2004-09-27 11:09 286.72 66104 2004-09-27 16:37 equipment fault

Plot a categorical histogram of the Cause variable. Specify an output argument to return
a handle to the histogram object.

h = histogram(C.Cause);
xlabel('Cause of Outage')
ylabel('Frequency')
title('Most Common Power Outage Causes')

 Control Categorical Histogram Display

6-51

Change the normalization of the histogram to use the 'probability' normalization,
which displays the relative frequency of each outage cause.

h.Normalization = 'probability';
ylabel('Relative Frequency')

6 Creating Specialized Plots

6-52

Change Display Order

Use the 'DisplayOrder' option to sort the bins from largest to smallest.

h.DisplayOrder = 'descend';

 Control Categorical Histogram Display

6-53

Truncate Number of Bars Displayed

Use the 'NumDisplayBins' option to display only three bars in the plot. The displayed
probabilities no longer add to 1 since the undisplayed data is still taken into account for
normalization.

h.NumDisplayBins = 3;

6 Creating Specialized Plots

6-54

Summarize Excluded Data

Use the 'ShowOthers' option to summarize all of the excluded bars, so that the
displayed probabilities again add to 1.

h.ShowOthers = 'on';

 Control Categorical Histogram Display

6-55

Limit Normalization to Display Data

Prior to R2017a, the histogram and histcounts functions used only binned data to
calculate normalizations. This behavior meant that if some of the data ended up outside
the bins, it was ignored for the purposes of normalization. However, in MATLAB®
R2017a, the behavior changed to always normalize using the total number of elements in
the input data. The new behavior is more intuitive, but if you prefer the old behavior, then
you need to take a few special steps to limit the normalization only to the binned data.

Instead of normalizing over all of the input data, you can limit the probability
normalization to the data that is displayed in the histogram. Simply update the Data
property of the histogram object to remove the other categories. The Categories
property reflects the categories displayed in the histogram. Use setdiff to compare the

6 Creating Specialized Plots

6-56

two property values and remove any category from Data that is not in Categories. Then
remove all of the resulting undefined categorical elements from the data, leaving only
elements in the displayed categories.

h.ShowOthers = 'off';
cats_to_remove = setdiff(categories(h.Data),h.Categories);
h.Data = removecats(h.Data,cats_to_remove);
h.Data = rmmissing(h.Data);

 Control Categorical Histogram Display

6-57

The normalization is now based only on the three remaining categories, so the three bars
add to 1.

See Also
categorical | histogram | histogram

6 Creating Specialized Plots

6-58

Replace Discouraged Instances of hist and histc
In this section...
“Old Histogram Functions (hist, histc)” on page 6-59
“Recommended Histogram Functions” on page 6-59
“Differences Requiring Code Updates” on page 6-60

Old Histogram Functions (hist, histc)
Earlier versions of MATLAB use the hist and histc functions as the primary way to
create histograms and calculate histogram bin counts. These functions, while good for
some general purposes, have limited overall capabilities. The use of hist and histc in
new code is discouraged for these reasons (among others):

• After using hist to create a histogram, modifying properties of the histogram is
difficult and requires recomputing the entire histogram.

• The default behavior of hist is to use 10 bins, which is not suitable for many data
sets.

• Plotting a normalized histogram requires manual computations.
• hist and histc do not have consistent behavior.

Recommended Histogram Functions
The histogram, histcounts, and discretize functions dramatically advance the
capabilities of histogram creation and calculation in MATLAB, while still promoting
consistency and ease of use. histogram, histcounts, and discretize are the
recommended histogram creation and computation functions for new code.

Of particular note are the following changes, which stand as improvements over hist
and histc:

• histogram can return a histogram object. You can use the object to modify properties
of the histogram.

• Both histogram and histcounts have automatic binning and normalization
capabilities, with several common options built-in.

• histcounts is the primary calculation function for histogram. The result is that the
functions have consistent behavior.

 Replace Discouraged Instances of hist and histc

6-59

• discretize provides additional options and flexibility for determining the bin
placement of each element.

Differences Requiring Code Updates
Despite the aforementioned improvements, there are several important differences
between the old and now recommended functions, which might require updating your
code. The tables summarize the differences between the functions and provide
suggestions for updating code.

6 Creating Specialized Plots

6-60

Code Updates for hist

Difference Old behavior with hist New behavior with
histogram

Input matrices hist creates a histogram
for each column of an input
matrix and plots the
histograms side-by-side in
the same figure.

A = randn(100,2);
hist(A)

histogram treats the input
matrix as a single tall vector
and creates a single
histogram. To plot multiple
histograms, create a
different histogram object
for each column of data. Use
the hold on command to
plot the histograms in the
same figure.

A = randn(100,2);
h1 = histogram(A(:,1),10)
edges = h1.BinEdges;
hold on
h2 = histogram(A(:,2),edges)

The above code example
uses the same bin edges for
each histogram, but in some
cases it is better to set the
BinWidth of each
histogram to be the same
instead. Also, for display
purposes, it might be helpful
to set the FaceAlpha
property of each histogram,
as this affects the
transparency of overlapping
bars.

 Replace Discouraged Instances of hist and histc

6-61

Difference Old behavior with hist New behavior with
histogram

Bin specification hist accepts the bin
centers as a second input.

histogram accepts the bin
edges as a second input.

To convert bin centers into
bin edges for use with
histogram, see “Convert
Bin Centers to Bin Edges”
on page 6-67.

Note In cases where the
bin centers used with hist
are integers, such as
hist(A,-3:3), use the
new built-in binning method
of histogram for integers.

histogram(A,'BinLimits',[-3,3],'BinMethod','integers')

6 Creating Specialized Plots

6-62

Difference Old behavior with hist New behavior with
histogram

Output arguments hist returns the bin counts
as an output argument, and
optionally can return the bin
centers as a second output
argument.

A = randn(100,1);
[N, Centers] = hist(A)

histogram returns a
histogram object as an
output argument. The object
contains many properties of
interest (bin counts, bin
edges, and so on). You can
modify aspects of the
histogram by changing its
property values. For more
information, see
histogram.

A = randn(100,1);
h = histogram(A);
N = h.Values
Edges = h.BinEdges

Note To calculate bin
counts (without plotting a
histogram), replace [N,
Centers] = hist(A) with
[N,edges] =
histcounts(A,nbins).

Default number of bins hist uses 10 bins by
default.

Both histogram and
histcounts use an
automatic binning algorithm
by default. The number of
bins is determined by the
size and spread of the input
data.

A = randn(100,1);
histogram(A)
histcounts(A)

 Replace Discouraged Instances of hist and histc

6-63

Difference Old behavior with hist New behavior with
histogram

Bin limits hist uses the minimum and
maximum finite data values
to determine the left and
right edges of the first and
last bar in the plot. -Inf
and Inf are included in the
first and last bin,
respectively.

If BinLimits is not set,
then histogram uses
rational bin limits based on,
but not exactly equal to, the
minimum and maximum
finite data values.
histogram ignores Inf
values unless one of the bin
edges explicitly specifies
Inf or -Inf as a bin edge.

To reproduce the results of
hist(A) for finite data (no
Inf values), use 10 bins and
explicitly set BinLimits to
the minimum and maximum
data values.

A = randi(5,100,1);
histogram(A,10,'BinLimits',[min(A) max(A)])

6 Creating Specialized Plots

6-64

Code Updates for histc

Difference Old behavior with histc New behavior with
histcounts

Input matrices histc calculates the bin
counts for each column of
input data. For an input
matrix of size m-by-n, histc
returns a matrix of bin
counts of size
length(edges)-by-n.

A = randn(100,10);
edges = -4:4;
N = histc(A,edges)

histcounts treats the
input matrix as a single tall
vector and calculates the
bin counts for the entire
matrix.

A = randn(100,10);
edges = -4:4;
N = histcounts(A,edges)

Use a for-loop to calculate
bin counts over each
column.

A = randn(100,10);
nbins = 10;
N = zeros(nbins, size(A,2));
for k = 1:size(A,2)
 N(:,k) = histcounts(A(:,k),nbins);
end

If performance is a problem
due to a large number of
columns in the matrix, then
consider continuing to use
histc for the column-wise
bin counts.

 Replace Discouraged Instances of hist and histc

6-65

Difference Old behavior with histc New behavior with
histcounts

Values included in last bin histc includes an element
A(i) in the last bin if A(i)
== edges(end). The
output, N, is a vector with
length(edges) elements
containing the bin counts.
Values falling outside the
bins are not counted.

histcounts includes an
element A(i) in the last bin
if edges(end-1) <= A(i)
<= edges(end). In other
words, histcounts
combines the last two bins
from histc into a single
final bin. The output, N, is a
vector with
length(edges)-1
elements containing the bin
counts. If you specify the bin
edges, then values falling
outside the bins are not
counted. Otherwise,
histcounts automatically
determines the proper bin
edges to use to include all of
the data.

A = 1:4;
edges = [1 2 2.5 3]
N = histcounts(A)
N = histcounts(A,edges)

The last bin from histc is
primarily useful to count
integers. To do this integer
counting with histcounts,
use the 'integers' bin
method:

N = histcounts(A,'BinMethod','integers');

6 Creating Specialized Plots

6-66

Difference Old behavior with histc New behavior with
histcounts

Output arguments histc returns the bin
counts as an output
argument, and optionally
can return the bin indices as
a second output argument.

A = randn(15,1);
edges = -4:4;
[N,Bin] = histc(A,edges)

• For bin count
calculations like N =
histc(A,edges) or
[N,bin] =
histc(A,edges), use
histcounts. The
histcounts function
returns the bin counts as
an output argument, and
optionally can return the
bin edges as a second
output, or the bin indices
as a third output.

A = randn(15,1);
[N,Edges,Bin] = histcounts(A)

• For bin placement
calculations like
[~,Bin] =
histc(A,edges), use
discretize. The
discretize function
offers additional options
for determining the bin
placement of each
element.

A = randn(15,1);
edges = -4:4;
Bin = discretize(A,edges)

Convert Bin Centers to Bin Edges

The hist function accepts bin centers, whereas the histogram function accepts bin
edges. To update code to use histogram, you might need to convert bin centers to bin
edges to reproduce results achieved with hist.

For example, specify bin centers for use with hist. These bins have a uniform width.

 Replace Discouraged Instances of hist and histc

6-67

A = [-9 -6 -5 -2 0 1 3 3 4 7];
centers = [-7.5 -2.5 2.5 7.5];
hist(A,centers)

To convert the bin centers into bin edges, calculate the midpoint between consecutive
values in centers. This method reproduces the results of hist for both uniform and
nonuniform bin widths.

d = diff(centers)/2;
edges = [centers(1)-d(1), centers(1:end-1)+d, centers(end)+d(end)];

The hist function includes values falling on the right edge of each bin (the first bin
includes both edges), whereas histogram includes values that fall on the left edge of

6 Creating Specialized Plots

6-68

each bin (and the last bin includes both edges). Shift the bin edges slightly to obtain the
same bin counts as hist.

edges(2:end) = edges(2:end)+eps(edges(2:end))

edges = 1×5

 -10.0000 -5.0000 0.0000 5.0000 10.0000

Now, use histogram with the bin edges.

histogram(A,edges)

 Replace Discouraged Instances of hist and histc

6-69

Combine Line and Stem Plots
This example shows how to combine a line plot and two stem plots. Then, it shows how to
add a title, axis labels, and a legend.

Create the data and plot a line.

x = linspace(0,2*pi,60);
a = sin(x);
b = cos(x);
plot(x,a+b)

Add two stem plots to the axes. Prevent new plots from replacing existing plots using
hold on.

6 Creating Specialized Plots

6-70

hold on
stem(x,a)
stem(x,b)
hold off

Add a title, axis labels, and a legend. Specify the legend descriptions in the order that you
create the plots.

title('Linear Combination of Two Functions')
xlabel('Time in \musecs')
ylabel('Magnitude')
legend('a+b','a = sin(x)','b = cos(x)')

 Combine Line and Stem Plots

6-71

6 Creating Specialized Plots

6-72

Overlay Stairstep Plot and Line Plot
This example shows how to overlay a line plot on a stairstep plot.

Define the data to plot.

alpha = 0.01;
beta = 0.5;
t = 0:10;
f = exp(-alpha*t).*sin(beta*t);

Display f as a stairstep plot. Use the hold function to retain the stairstep plot. Add a line
plot of f using a dashed line with star markers.

stairs(t,f)
hold on
plot(t,f,'--*')
hold off

 Overlay Stairstep Plot and Line Plot

6-73

Use the axis function to set the axis limits. Label the x-axis and add a title to the graph.

axis([0,10,-1.2,1.2])
xlabel('t = 0:10')
title('Stairstep plot of e^{-(\alpha*t)} sin\beta*t')

6 Creating Specialized Plots

6-74

See Also
axis | plot | stairs

 See Also

6-75

Combine Contour Plot and Quiver Plot
This example shows how to combine a contour plot and a quiver plot using the hold
function.

Plot 10 contours of over a grid from -2 to 2 in the x and y directions.

[X,Y] = meshgrid(-2:0.2:2);
Z = X .* exp(-X.^2 - Y.^2);
contour(X,Y,Z,10)

6 Creating Specialized Plots

6-76

Calculate the 2-D gradient of Z using the gradient function. The gradient function
returns U as the gradient in the x-direction and V as the gradient in the y-direction.
Display arrows indicating the gradient values using the quiver function.

[U,V] = gradient(Z,0.2,0.2);
hold on
quiver(X,Y,U,V)
hold off

 Combine Contour Plot and Quiver Plot

6-77

Projectile Path Over Time
This example shows how to display the path of a projectile as a function of time using a
three-dimensional quiver plot.

Show the path of the following projectile using constants for velocity and acceleration, vz
and a. Calculate z as the height as time varies from 0 to 1.

vz = 10; % velocity constant
a = -32; % acceleration constant
t = 0:.1:1;
z = vz*t + 1/2*a*t.^2;

Calculate the position in the x-direction and y-direction.

vx = 2;
x = vx*t;

vy = 3;
y = vy*t;

Compute the components of the velocity vectors and display the vectors using a 3-D
quiver plot. Change the viewpoint of the axes to [70,18].

u = gradient(x);
v = gradient(y);
w = gradient(z);
scale = 0;

figure
quiver3(x,y,z,u,v,w,scale)
view([70,18])

6 Creating Specialized Plots

6-78

 Projectile Path Over Time

6-79

Label Contour Plot Levels
This example shows how to label each contour line with its associated value.

The contour matrix, C, is an optional output argument returned by contour, contour3,
and contourf. The clabel function uses values from C to display labels for 2-D contour
lines.

Display eight contour levels of the peaks function and label the contours. clabel labels
only contour lines that are large enough to contain an inline label.

Z = peaks;
figure
[C,h] = contour(Z,8);

clabel(C,h)
title('Contours Labeled Using clabel(C,h)')

6 Creating Specialized Plots

6-80

To interactively select the contours to label using the mouse, pass the manual option to
clabel, for example, clabel(C,h,'manual'). This command displays a crosshair
cursor when the mouse is within the figure. Click the mouse to label the contour line
closest to the cursor.

See Also
clabel | contour | contour3 | contourf

 See Also

6-81

Change Fill Colors for Contour Plot
This example shows how to change the colors used in a filled contour plot.

Change Colormap

Set the colors for the filled contour plot by changing the colormap. Pass the predefined
colormap name, hot, to the colormap function.

[X,Y,Z] = peaks;
figure
contourf(X,Y,Z,20)
colormap(hot)
title('Hot Colormap')

6 Creating Specialized Plots

6-82

Control Mapping of Data Values to Colormap

Use only the colors in the center of the hot colormap by setting the color axis scaling to a
range much larger than the range of values in matrix Z. The caxis function controls the
mapping of data values into the colormap. Use this function to set the color axis scaling.

caxis([-20,20])
title('Center of Hot Colormap')

See Also
caxis | colormap | contourf

 See Also

6-83

Highlight Specific Contour Levels
This example shows how to highlight contours at particular levels.

Define Z as the matrix returned from the peaks function.

Z = peaks(100);

Round the minimum and maximum data values in Z and store these values in zmin and
zmax, respectively. Define zlevs as 40 values between zmin and zmax.

zmin = floor(min(Z(:)));
zmax = ceil(max(Z(:)));
zinc = (zmax - zmin) / 40;
zlevs = zmin:zinc:zmax;

Plot the contour lines.

figure
contour(Z,zlevs)

6 Creating Specialized Plots

6-84

Define zindex as a vector of integer values between zmin and zmax indexed by 2.

zindex = zmin:2:zmax;

Retain the previous contour plot. Create a second contour plot and use zindex to
highlight contour lines at every other integer value. Set the line width to 2.

hold on
contour(Z,zindex,'LineWidth',2)
hold off

 Highlight Specific Contour Levels

6-85

See Also
ceil | contour | floor | hold | max | min

6 Creating Specialized Plots

6-86

Create Word Cloud from String Arrays
This example shows how to create a word cloud from plain text by reading it into a string
array, preprocessing it, and passing it to the wordcloud function. If you have Text
Analytics Toolbox™ installed, then you can create word clouds directly from string arrays.
For more information, see wordcloud (Text Analytics Toolbox).

Read the text from Shakespeare's Sonnets with the fileread function.

sonnets = fileread('sonnets.txt');
sonnets(1:135)

ans =
 'THE SONNETS

 by William Shakespeare

 I

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,'

Convert the text to a string using the string function. Then, split it on newline
characters using the splitlines function.

sonnets = string(sonnets);
sonnets = splitlines(sonnets);
sonnets(10:14)

ans = 5x1 string array
 " From fairest creatures we desire increase,"
 " That thereby beauty's rose might never die,"
 " But as the riper should by time decease,"
 " His tender heir might bear his memory:"
 " But thou, contracted to thine own bright eyes,"

Replace some punctuation characters with spaces.

 Create Word Cloud from String Arrays

6-87

p = ["." "?" "!" "," ";" ":"];
sonnets = replace(sonnets,p," ");
sonnets(10:14)

ans = 5x1 string array
 " From fairest creatures we desire increase "
 " That thereby beauty's rose might never die "
 " But as the riper should by time decease "
 " His tender heir might bear his memory "
 " But thou contracted to thine own bright eyes "

Split sonnets into a string array whose elements contain individual words. To do this,
join all the string elements into a 1-by-1 string and then split on the space characters.

sonnets = join(sonnets);
sonnets = split(sonnets);
sonnets(7:12)

ans = 6x1 string array
 "From"
 "fairest"
 "creatures"
 "we"
 "desire"
 "increase"

Remove words with fewer than five characters.

sonnets(strlength(sonnets)<5) = [];

Convert sonnets to a categorical array and then plot using wordcloud. The function
plots the unique elements of C with sizes corresponding to their frequency counts.

C = categorical(sonnets);
figure
wordcloud(C);
title("Sonnets Word Cloud")

6 Creating Specialized Plots

6-88

 Create Word Cloud from String Arrays

6-89

Animation Techniques
In this section...
“Updating the Screen” on page 6-90
“Optimizing Performance” on page 6-90

You can use three basic techniques for creating animations in MATLAB:

• Update the properties of a graphics object and display the updates on the screen. This
technique is useful for creating animations when most of the graph remains the same.
For example, set the XData and YData properties repeatedly to move an object in the
graph.

• Apply transforms to objects. This technique is useful when you want to operate on the
position and orientation of a group of objects together. Group the objects as children
under a transform object. Create the transform object using hgtransform. Setting
the Matrix property of the transform object adjusts the position of all its children.

• Create a movie. Movies are useful if you have a complex animation that does not draw
quickly in real time, or if you want to store an animation to replay it. Use the
getframe and movie functions to create a movie.

Updating the Screen
In some cases, MATLAB does not update the screen until the code finishes executing. Use
one of the drawnow commands to display the updates on the screen throughout the
animation.

Optimizing Performance
To optimize performance, consider these techniques:

• Use the animatedline function to create line animations of streaming data.
• Update properties of an existing object instead of creating new graphics objects.
• Set the axis limits (XLim, YLim, ZLim) or change the associated mode properties to

manual mode (XLimMode, YLimMode, ZLimMode) so that MATLAB does not
recalculate the values each time the screen updates. When you set the axis limits, the
associated mode properties change to manual mode.

6 Creating Specialized Plots

6-90

• Avoid creating a legend or other annotations within a loop. Add the annotation after
the loop.

For more information on optimizing performance, see “Graphics Performance”.

See Also

Related Examples
• “Trace Marker Along Line” on page 6-92
• “Move Group of Objects Along Line” on page 6-96
• “Line Animations” on page 6-104
• “Record Animation for Playback” on page 6-107

 See Also

6-91

Trace Marker Along Line
This example shows how to trace a marker along a line by updating the data properties of
the marker.

Plot a sine wave and a red marker at the beginning of the line. Set the axis limits mode to
manual to avoid recalculating the limits throughout the animation loop.

x = linspace(0,10,1000);
y = sin(x);
plot(x,y)
hold on
p = plot(x(1),y(1),'o','MarkerFaceColor','red');
hold off
axis manual

6 Creating Specialized Plots

6-92

Move the marker along the line by updating the XData and YData properties in a loop.
Use a drawnow or drawnow limitrate command to display the updates on the screen.
drawnow limitrate is fastest, but it might not draw every frame on the screen.

Note: Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead, such as set(p,'XData',x(k)).

for k = 2:length(x)
 p.XData = x(k);
 p.YData = y(k);
 drawnow
end

 Trace Marker Along Line

6-93

The animation shows the marker moving along the line.

See Also
drawnow | linspace | plot

Related Examples
• “Move Group of Objects Along Line” on page 6-96
• “Animate Graphics Object” on page 6-100
• “Record Animation for Playback” on page 6-107

6 Creating Specialized Plots

6-94

• “Line Animations” on page 6-104

 See Also

6-95

Move Group of Objects Along Line
This example shows how to move a group of objects together along a line using
transforms.

Plot a sine wave and set the axis limits mode to manual to avoid recalculating the limits
during the animation loop.

x = linspace(-6,6,1000);
y = sin(x);
plot(x,y)
axis manual

6 Creating Specialized Plots

6-96

Create a transform object and set its parent to the current axes. Plot a marker and a text
annotation at the beginning of the line. Use the num2str function to convert the y-value
at that point to text. Group the two objects by setting their parents to the transform
object.

ax = gca;
h = hgtransform('Parent',ax);
hold on
plot(x(1),y(1),'o','Parent',h);
hold off
t = text(x(1),y(1),num2str(y(1)),'Parent',h,...
 'VerticalAlignment','top','FontSize',14);

 Move Group of Objects Along Line

6-97

Move the marker and text to each subsequent point along the line by updating the
Matrix property of the transform object. Use the x and y values of the next point in the
line and the first point in the line to determine the transform matrix. Update the text to
match the y-value as it moves along the line. Use drawnow to display the updates to the
screen after each iteration.

for k = 2:length(x)
 m = makehgtform('translate',x(k)-x(1),y(k)-y(1),0);
 h.Matrix = m;
 t.String = num2str(y(k));
 drawnow
end

The animation shows the marker and text moving together along the line.

6 Creating Specialized Plots

6-98

If you have a lot of data, you can use drawnow limitrate instead of drawnow for a
faster animation. However, drawnow limitrate might not draw every update on the
screen.

See Also
axis | drawnow | hgtransform | makehgtform | plot | text

Related Examples
• “Animate Graphics Object” on page 6-100
• “Record Animation for Playback” on page 6-107
• “Line Animations” on page 6-104

 See Also

6-99

Animate Graphics Object
This example shows how to animate a triangle looping around the inside of a circle by
updating the data properties of the triangle.

Plot the circle and set the axis limits so that the data units are the same in both
directions.

theta = linspace(-pi,pi);
xc = cos(theta);
yc = -sin(theta);
plot(xc,yc);
axis equal

6 Creating Specialized Plots

6-100

Use the area function to draw a flat triangle. Then, change the value of one of the
triangle vertices using the (x,y) coordinates of the circle. Change the value in a loop to
create an animation. Use a drawnow or drawnow limitrate command to display the
updates after each iteration. drawnow limitrate is fastest, but it might not draw every
frame on the screen.

xt = [-1 0 1 -1];
yt = [0 0 0 0];
hold on
t = area(xt,yt); % initial flat triangle
hold off
for j = 1:length(theta)-10
 xt(2) = xc(j); % determine new vertex value
 yt(2) = yc(j);
 t.XData = xt; % update data properties
 t.YData = yt;
 drawnow limitrate % display updates
end

 Animate Graphics Object

6-101

The animation shows the triangle looping around the inside of the circle.

Copyright 2015 The MathWorks, Inc.

See Also
area | axis | drawnow | hold | plot

Related Examples
• “Trace Marker Along Line” on page 6-92
• “Line Animations” on page 6-104

6 Creating Specialized Plots

6-102

• “Record Animation for Playback” on page 6-107

More About
• “Animation Techniques” on page 6-90

 See Also

6-103

Line Animations
This example shows how to create an animation of two growing lines. The animatedline
function helps you to optimize line animations. It allows you to add new points to a line
without redefining existing points.

Create Lines and Add Points

Create two animated lines of different colors. Then, add points to the lines in a loop. Set
the axis limits before the loop so that to avoid recalculating the limits each time through
the loop. Use a drawnow or drawnow limitrate command to display the updates on the
screen after adding the new points.

a1 = animatedline('Color',[0 .7 .7]);
a2 = animatedline('Color',[0 .5 .5]);

axis([0 20 -1 1])
x = linspace(0,20,10000);
for k = 1:length(x);
 % first line
 xk = x(k);
 ysin = sin(xk);
 addpoints(a1,xk,ysin);

 % second line
 ycos = cos(xk);
 addpoints(a2,xk,ycos);

 % update screen
 drawnow limitrate
end

6 Creating Specialized Plots

6-104

The animation shows two lines that grow as they accumulate data.

Query Points of Line

Query the points of the first animated line.

[x,y] = getpoints(a1);

x and y are vectors that contain the values defining the points of the sine wave.

 Line Animations

6-105

Copyright 2015 The MathWorks, Inc.

See Also
addpoints | animatedline | clearpoints | drawnow | getpoints

Related Examples
• “Trace Marker Along Line” on page 6-92
• “Move Group of Objects Along Line” on page 6-96
• “Record Animation for Playback” on page 6-107

More About
• “Animation Techniques” on page 6-90

6 Creating Specialized Plots

6-106

Record Animation for Playback
These examples show how to record animations as movies that you can replay.

Record and Play Back Movie
Create a series of plots within a loop and capture each plot as a frame. Ensure the axis
limits stay constant by setting them each time through the loop. Store the frames in M.

for k = 1:16
 plot(fft(eye(k+16)))
 axis([-1 1 -1 1])
 M(k) = getframe;
end

 Record Animation for Playback

6-107

Copyright 2015 The MathWorks, Inc.

Play back the movie five times using the movie function.

figure
movie(M,5)

Capture Entire Figure for Movie
Include a slider on the left side of the figure. Capture the entire figure window by
specifying the figure as an input argument to the getframe function.

figure
u = uicontrol('Style','slider','Position',[10 50 20 340],...

6 Creating Specialized Plots

6-108

 'Min',1,'Max',16,'Value',1);
for k = 1:16
 plot(fft(eye(k+16)))
 axis([-1 1 -1 1])
 u.Value = k;
 M(k) = getframe(gcf);
end

Play back the movie fives times. Movies play back within the current axes. Create a new
figure and an axes to fill the figure window so that the movie looks like the original
animation.

 Record Animation for Playback

6-109

figure
axes('Position',[0 0 1 1])
movie(M,5)

See Also
axes | axis | eye | fft | getframe | movie | plot

Related Examples
• “Animate Graphics Object” on page 6-100
• “Line Animations” on page 6-104

More About
• “Animation Techniques” on page 6-90

6 Creating Specialized Plots

6-110

Customize Polar Axes Grid Lines and Appearance
You can modify certain aspects of polar axes in order to make the chart more readable.
For example, you can change the grid line locations and associated labels. You also can
change the grid line colors and label font size.

Create Polar Plot

Plot a line in polar coordinates and add a title.

theta = linspace(0,2*pi);
rho = 2*theta;
figure
polarplot(theta,rho)
title('My Polar Plot')

 Customize Polar Axes Grid Lines and Appearance

6-111

Change theta-Axis Grid Line Locations and Units

Display grid lines along the theta-axis every 45 degrees. Specify the grid line locations as
a vector of increasing values.

thetaticks(0:45:315)

6 Creating Specialized Plots

6-112

Label the theta-axis values in radians instead of degrees by changing the
ThetaAxisUnits property of the polar axes object. Use gca to assign the polar axes
object to the variable pax in order to access its properties.

pax = gca;
pax.ThetaAxisUnits = 'radians';

 Customize Polar Axes Grid Lines and Appearance

6-113

Rotate theta-Axis and Reverse Direction

Change the angles to increase in a clockwise direction. Also, rotate the theta-axis so that
the zero reference angle is on the left side.

pax = gca;
pax.ThetaDir = 'clockwise';
pax.ThetaZeroLocation = 'left';

6 Creating Specialized Plots

6-114

Change r-Axis Limits, Grid Line Locations, and Labels

Change the limits of the r-axis so that the values range from -5 to 15. Display grid lines at
the values -2, 3, 9, and 15. Then, change the labels that appear next to each grid line.
Specify the labels as a cell array of character vectors.

rlim([-5 15])
rticks([-2 3 9 15])
rticklabels({'r = -2','r = 3','r = 9','r = 15'})

 Customize Polar Axes Grid Lines and Appearance

6-115

Change Polar Axes Font Size

Change the font size for the polar axes labels.

pax = gca;
pax.FontSize = 12;

6 Creating Specialized Plots

6-116

Change Polar Axes Colors and Line Width

Use different colors for the theta-axis and r-axis grid lines and associated labels by setting
the ThetaColor and RColor properties. Change the width of the grid lines by setting
the LineWidth property.

Specify the colors using either a character vector of a color name, such as 'blue', or an
RGB triplet. An RGB triplet is a three-element row vector whose elements specify the
intensities of the red, green, and blue components of the color. The intensities must be in
the range [0,1], for example, [0.4 0.6 0.7].

pax = gca;
pax.ThetaColor = 'blue';

 Customize Polar Axes Grid Lines and Appearance

6-117

pax.RColor = [0 .5 0];
pax.LineWidth = 2;

Change the color of all the grid lines without affecting the labels by setting the
GridColor property.

pax.GridColor = 'red';

6 Creating Specialized Plots

6-118

When you specify the GridColor property, the ThetaColor and RColor properties no
longer affect the grid lines. If you want the ThetaColor and RColor properties to affect
the grid lines, then set the GridColorMode property back to 'auto'.

See Also
Polar Axes | polarplot | rticklabels | rticks | thetaticklabels | thetaticks

Related Examples
• “Compass Labels on Polar Axes” on page 6-120

 See Also

6-119

Compass Labels on Polar Axes
This example shows how to plot data in polar coordinates. It also shows how to specify
the angles at which to draw grid lines and how to specify the labels.

Plot data in polar coordinates and display a circle marker at each data point.

theta = linspace(0,2*pi,50);
rho = 1 + sin(4*theta).*cos(2*theta);
polarplot(theta,rho,'o')

Use gca to access the polar axes object. Specify the angles at which to draw grid lines by
setting the ThetaTick property. Then, specify the label for each grid line by setting the
ThetaTickLabel property.

6 Creating Specialized Plots

6-120

pax = gca;
angles = 0:45:360;
pax.ThetaTick = angles;
labels = {'E','NE','N','NW','W','SW','S','SE'};
pax.ThetaTickLabel = labels;

See Also
Polar Axes | polarplot | rlim

 See Also

6-121

Related Examples
• “Customize Polar Axes Grid Lines and Appearance” on page 6-111

6 Creating Specialized Plots

6-122

Create Line Plot with Markers
Adding markers to a line plot can be a useful way to distinguish multiple lines or to
highlight particular data points. Add markers in one of these ways:

• Include a marker symbol in the line-specification input argument, such as
plot(x,y,'-s').

• Specify the Marker property as a name-value pair, such as
plot(x,y,'Marker','s').

For a list of marker options, see “Supported Marker Symbols” on page 6-131.

Add Markers to Line Plot
Create a line plot. Display a marker at each data point by including the line-specification
input argument when calling the plot function. For example, use '-o' for a solid line
with circle markers.

x = linspace(0,10,100);
y = exp(x/10).*sin(4*x);
plot(x,y,'-o')

 Create Line Plot with Markers

6-123

If you specify a marker symbol and do not specify a line style, then plot displays only the
markers with no line connecting them.

plot(x,y,'o')

6 Creating Specialized Plots

6-124

Alternatively, you can add markers to a line by setting the Marker property as a name-
value pair. For example, plot(x,y,'Marker','o') plots a line with circle markers.

Specify Marker Size and Color
Create a line plot with markers. Customize the markers by setting these properties using
name-value pair arguments with the plot function:

• MarkerSize - Marker size, which is specified as a positive value.
• MarkerEdgeColor - Marker outline color, which is specified as a color name or an

RGB triplet.

 Create Line Plot with Markers

6-125

• MarkerFaceColor - Marker interior color, which is specified as a color name or an
RGB triplet.

Specify the colors using either a character vector of a color name, such as 'red', or an
RGB triplet, such as [0.4 0.6 0.7]. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0,1].

x = linspace(0,10,50);
y = sin(x);
plot(x,y,'-s','MarkerSize',10,...
 'MarkerEdgeColor','red',...
 'MarkerFaceColor',[1 .6 .6])

6 Creating Specialized Plots

6-126

Control Placement of Markers Along Line
Create a line plot with 1,000 data points, add asterisks markers, and control the marker
positions using the MarkerIndices property. Set the property to the indices of the data
points where you want to display markers. Display a marker every tenth data point,
starting with the first data point.

x = linspace(0,10,1000);
y = exp(x/10).*sin(4*x);
plot(x,y,'-*','MarkerIndices',1:10:length(y))

 Create Line Plot with Markers

6-127

Display Markers at Maximum and Minimum Data Points
Create a vector of random data and find the index of the minimum and maximum values.
Then, create a line plot of the data. Display red markers at the minimum and maximum
data values by setting the MarkerIndices property to a vector of the index values.

x = 1:100;
y = rand(100,1);
idxmin = find(y == max(y));
idxmax = find(y == min(y));
plot(x,y,'-p','MarkerIndices',[idxmin idxmax],...
 'MarkerFaceColor','red',...
 'MarkerSize',15)

6 Creating Specialized Plots

6-128

Revert to Default Marker Locations
Modify the marker locations, then revert back to the default locations.

Create a line plot and display large, square markers every five data points. Assign the
chart line object to the variable p so that you can access its properties after it is created.

x = linspace(0,10,25);
y = x.^2;
p = plot(x,y,'-s');
p.MarkerSize = 10;
p.MarkerIndices = 1:5:length(y);

 Create Line Plot with Markers

6-129

Reset the MarkerIndices property to the default value, which is a vector of all index
values from 1 to the number of data points.

p.MarkerIndices = 1:length(y);

6 Creating Specialized Plots

6-130

Supported Marker Symbols
Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square

 Create Line Plot with Markers

6-131

Value Description
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

The line-specification input argument does not support marker options that are more than
one character. Use the one character alternative or set the Marker property instead.

See Also
Functions
loglog | plot | plot3 | scatter

Properties
Chart Line

6 Creating Specialized Plots

6-132

Geographic Bubble Charts Overview
If you have data for specific geographic locations, use a geographic bubble chart to map
your data and provide visual context. Using a map as a background, the geographic
bubble chart plots your data as filled, colored circles, called bubbles, at locations on the
map specified by longitude and latitude. You can use the size and color of the bubbles to
indicate data values at these locations.

Suppose you have data that describes the occurrences of tsunamis around the world. Plot
the data in a geographic bubble chart where the bubbles mark each occurrence on a map,
called a basemap. You can use bubble size to indicate the height of the wave and bubble
color to indicate the cause. With the map as background, you can immediately see
tsunami occurrences and their severity. Plotting the data on a map is an effective way to
visualize your data.

A geographic bubble chart includes these components (shown in the following figure):

 Geographic Bubble Charts Overview

6-133

Geographic Bubble Chart Components

Component Description
Basemap The map over which the geographic bubble chart plots the data.

For more information, see “Geographic Bubble Chart Basemaps”
on page 6-135.

Bubbles Symbols that mark map locations and communicate other
information through their size and color.

Data Tips Small windows that pop open containing information about the
bubble, such as latitude and longitude. For more information, see
“Data Tips on Geographic Bubble Charts” on page 6-140.

Decorations Descriptive visual elements of the chart, such as latitude and
longitude grids, and a scale bar, which shows how distances are
represented on the map. The chart updates these elements as
you zoom in and out on the map. Use geographic bubble chart
properties to control the visibilitly of these elements, such as the
ScalebarVisible property.

Legends Displays of tabular information that explain the meaning of
bubble size and bubble color. For more information, see
“Geographic Bubble Chart Legends” on page 6-141.

Title Text displayed at the top of the chart, similar to any MATLAB
figure. You can specify this using the geographic bubble chart
Title property or the title command.

Zoom controls Set of controls that let you zoom in or out on the map, or return
to the orginal view of the map. For more information, see “Pan
and Zoom Geographic Bubble Charts” on page 6-138.

6 Creating Specialized Plots

6-134

Geographic Bubble Chart Basemaps
Geographic bubble charts include multiresolution basemaps, providing spatial context for
your geographic data. MathWorks provides six basemaps that you can use with a
geographic bubble chart. The basemaps provide a variety of display options, from two-
tone, land-ocean raster maps to color terrain maps. You can specify the basemap when
you create the chart using the geobubble function or change the basemap using the
Basemap property. See geobubble for more information.

 Geographic Bubble Charts Overview

6-135

The basemaps are tiled data sets that the MathWorks® derives from public domain data.

MathWorks includes one basemap with the product, a two-toned map named
'darkwater'. If you choose one of the other basemaps, the chart accesses the map over
the Internet. MathWorks hosts these basemaps. If you do not have reliable access to the
Internet, or want to improve map responsiveness, you can download these basemaps onto
your local system. For more information about downloading basemaps, see “Access
Basemaps in MATLAB” on page 6-157.

6 Creating Specialized Plots

6-136

Components of Geographic Bubble Chart Display

A geographic bubble chart display is made up of the following components:

• Basemap, a context-setting foundation with land-water areas, terrain, or color-coded
land-use plus boundary lines.

• Bubbles that represent your data
• Decorations such as latitude and longitude grids

The following illustration shows these components.

Geographic Bubble Chart Basemap Caching Behavior

if you are accessing the basemap over the Internet, the geographic bubble chart caches
the basemap tiles as you pan and zoom, to improve performance. As you pan or zoom, the

 Geographic Bubble Charts Overview

6-137

chart only has to retrieve basemap tiles over the Internet once. This also means that, if
you lose your connection to the Internet, you can still view parts of the map that you have
already visited--these map tiles are stored locally. When you are not connected to the
Internet and you attempt to view a part of the map that you haven't previously viewed,
the chart uses tiles of the default basemap ('darkwater') that is included with the
product for these areas.

Pan and Zoom Geographic Bubble Charts
The basemap in a geographic bubble chart is live, that is, you can pan the basemap, to
view other geographic locations, or zoom in and out on the map to view regions in more
detail. The chart updates the map as you pan and zoom. On geographic bubble charts,
pan and zoom capabilities are enabled by default.

To pan the basemap in a geographic bubble chart, you can use the arrow keys. You can
also move the cursor over the map, and click and drag the basemap. You can pan the map
in the horizontal direction continuously--longitude wraps. Panning in the vertical direction
stops just beyond 85 degrees, north and south.

To zoom in and out on the map in a geographic bubble chart, you can use the scroll wheel,
trackpad, or the Plus and Minus keys on the keyboard. The geographic bubble chart also
includes zoom buttons and a Fit to Data button at the top of the chart. This set of buttons
is only visible when you move the cursor anywhere over the map. To return to the original
view of the map after panning and zooming, click the Fit to Data button.

6 Creating Specialized Plots

6-138

 Geographic Bubble Charts Overview

6-139

Data Tips on Geographic Bubble Charts
In a geographic bubble chart, a data tip is a small window that pops open when you hover
a bubble. The data tip contains information about the variable data represented by the
bubble, such as its latitude and longitude. On geographic bubble charts, the data tip
capability is enabled by default.

To view a data tip, position the cursor over a bubble and hover there. The geographic
bubble chart displays the data tip associated with the bubble.

For example, to get information about the largest bubble in the geographic bubble chart
showing tsunami data, position the cursor over the large orange bubble and hold it there.
The data tip includes the latitude, longitude, maximum wave height, and cause the bubble
represents. Because the call to geobubble that created this chart specified the table that
holds the data, the data tip includes the row in the table represented by the bubble and
uses the table variable names.

6 Creating Specialized Plots

6-140

Geographic Bubble Chart Legends
When you create a geographic bubble chart with SizeData, the chart includes a size
legend that explains how the bubble sizes represent the data. The legend includes a
sampling of four bubble sizes, smallest to largest. You can specify the widths of the
smallest and largest bubbles using the BubbleWidthRange property. The legend labels
the smallest and largest bubbles in the legend with their associated numeric values. The
legend gets these values from the SizeLimits property. If you are specifying SizeData
directly, the legend has no title. You can specify a title for the legend using the

 Geographic Bubble Charts Overview

6-141

SizeLegendTitle property. If you are specifying a table variable for size data, the
legend uses the variable name as the size legend title. The legend includes a sampling of
four bubble sizes, smallest to largest. The widths of the smallest and largest bubbles can
be specified using the BubbleWidthRange property. The legend labels the smallest and
largest bubbles in the legend with their associated numeric values.

Similarly, if you create a geographic bubble chart with ColorData, the chart includes a
color legend that shows how bubble colors map to your categorical data. The legend
includes all the colors, labeled with their associated category. If you are specifying
ColorData directly, the legend has no title. You can specify a title for the legend using
the ColorLegendTitle property. If you are specifying a table variable for color data, the
legend uses the variable name as the color legend title.

The following illustration shows the geographic bubble chart size and color legends.

6 Creating Specialized Plots

6-142

See Also
GeographicBubbleChart Properties | geobubble

Related Examples
• “Use Geographic Bubble Chart Properties” on page 6-146
• “Access Basemaps in MATLAB” on page 6-157
• “Troubleshoot Geographic Bubble Chart Basemap Connection” on page 6-159

 See Also

6-143

• “Create Geographic Bubble Chart from Tabular Data” on page 6-161

6 Creating Specialized Plots

6-144

Deploy Geographic Bubble Charts
You can deploy MATLAB applications that include a geographic bubble chart. Users of
your application get the same experience that MATLAB users get: a "live" map that can be
panned and zoomed.

If your deployed application uses only the default basemap, 'darkwater', this map is
included with the product.

If your deployed application offers users a choice of basemaps, they can access these
basemaps over the Internet, just as MATLAB users do.

If your deployed application offers users a choice of basemaps, and you want users to
have access to map data without an Internet connection, you must download the basemap
add-ons and include them in the deployed application package. When you create your
deployed application, the deployment tool lists any basemap addons that you have
downloaded onto your local system. Users of your deployed application will see the
basemap you packaged with your app.

Note By default, the deployment tools lists all of the basemap add-ons that you have
downloaded onto your system, preselected for inclusion in the deploymed application
package. Do not leave them all selected. Choose only the basemap (or basemaps) that you
want users of your application to see. Including all the basemap add-ons in your deployed
application package can create a file that exceeds file system limits.

See Also
GeographicBubbleChart Properties | geobubble

Related Examples
• “Use Geographic Bubble Chart Properties” on page 6-146
• “Access Basemaps in MATLAB” on page 6-157
• “Troubleshoot Geographic Bubble Chart Basemap Connection” on page 6-159
• “Geographic Bubble Charts Overview” on page 6-133
• “Create Geographic Bubble Chart from Tabular Data” on page 6-161

 Deploy Geographic Bubble Charts

6-145

Use Geographic Bubble Chart Properties
In this section...
“Control Bubble Size” on page 6-146
“Control Bubble Color” on page 6-150
“Specify Map Limits” on page 6-151

This topic describes some common tasks you can perform using geographic bubble charts
properties.

Control Bubble Size
You can use the size of the bubbles in a geographic bubble chart to communicate a
quantifiable aspect of your data. For example, for Lyme disease sample data, you can use
bubble size to visualize the number of cases in each county in New England. The
following properties of the geographic bubble chart work together to control the size of
the bubbles on the chart:

• SizeData
• SizeVariable
• SizeLimits
• BubbleWidthRange

The SizeData property specifies the data that you want to plot on the chart. SizeData
must be a vector of numeric data the same size as the latitude and longitude vectors, or a
scalar. Another way to specify size data is to pass a table as the first argument to
geobubble and specify the name of a table variable to use for size data. You use the
SizeVariable property to specify this table variable. When you use a table variable to
specify size data, geobubble stores the values of this variable in the SizeData property
and sets the property to read-only. If you do not specify SizeData, geobubble plots the
geographic locations on a map using bubbles that are all the same size.

geobubble determines the size (diameter) of each bubble by linearly scaling the
SizeData values between the limits set by the BubbleWidthRange property.
BubbleWidthRange is a two-element vector that specifies the smallest bubble diameter
and the largest bubble diameter in points. By default, BubbleWidthRange sets the range
of bubble diameters between 5 points and 20 points. You can specify a bubble diameter as
small as 1 point and as large as 100 points.

6 Creating Specialized Plots

6-146

Use the SizeLimits property to control the mapping between SizeData and
BubbleWidthRange. By default, the SizeLimits property specifies the extremes of
your data range. For example, the SizeLimits default for the Lyme disease sample data
is: [0 514] when the Cases2010 variable is used as the SizeVariable.

When you specify size data, the geographic bubble chart includes a legend that describes
the mapping of bubble sizes to your data. geobubble uses the values in the SizeLimits
property as upper and lower bounds of the legend. When you specify a table variable,
geobubble uses the variable name as the title of the size legend.

Make Bubbles Smaller in Geographic Bubble Charts

This example shows how to reduce the size of the bubbles in a geographic bubble chart
using the BubbleWidthRange property. (You can also reduce overlapping by resizing the
geographic bubble chart figure.)

Read Lyme disease sample data into the workspace.

counties = readtable('counties.xlsx');

Create a geographic bubble chart using the latitude, longitude, and occurrence data from
the table.

gb = geobubble(counties,'Latitude','Longitude','SizeVariable','Cases2010');

 Use Geographic Bubble Chart Properties

6-147

View the values of the SizeData and SizeLimits properties of the geographic bubble
chart.

size_data_values = gb.SizeData;
size_data_values(1:15)

ans = 15×1

 331
 187
 88
 125
 240
 340

6 Creating Specialized Plots

6-148

 161
 148
 38
 4
 ⋮

size_limits = gb.SizeLimits

size_limits = 1×2

 0 514

Make the bubbles smaller to avoid overlapping using the BubbleWidthRange property.
First view the initial setting of the property.

default_width_range = gb.BubbleWidthRange

default_width_range = 1×2

 5 20

gb.BubbleWidthRange = [4 15];

 Use Geographic Bubble Chart Properties

6-149

Control Bubble Color
You can use the color of the bubbles in a geographic bubble chart to code them according
to data category. For example, in the Lyme disease sample data, you can characterize the
severity of Lyme disease in each county in New England as high, medium, or low. The
following properties of the geographic bubble chart work together to control the color of
the bubbles on the chart:

• ColorData
• ColorVariable

6 Creating Specialized Plots

6-150

• BubbleColorList

The ColorData property specifies the data that you want to control the color of the
bubbles in your chart. ColorData must be a vector of categorical data, the same size as
latitude and longitude. Another way to specify color data is to pass a table as the first
argument to geobubble and specify the name of a table variable to use for color data.
You use the ColorVariable property to specify this table variable. geobubble stores
the values of the table variable in the ColorData property and sets the property to read-
only.

If your data does not initially include a categorical variable, you can create one. For
example, the Lyme disease sample data does not include a categorical variable. One way
to create a variable of this type is to use the discretize function. Take the occurrences
data, cases2010, and create three categories based on the number of occurrences,
describing them as low, medium, or high. The following code creates a categorical
variable named Severity from the occurrence data.

Severity = discretize(counties.Cases2010,[0 50 100 550],...
'categorical', {'Low', 'Medium', 'High'});

The BubbleColorList property controls the colors used for the bubbles in a geographic
bubble chart. The value is an m-by-3 array where each row is an RGB color triplet. By
default, geobubble uses a set of seven colors. If you have more than seven categories,
the colors repeat cyclically. To change the colors used, use one of the other MATLAB
colormap functions, such as parula or jet, or specify a custom list of colors.

Specify Map Limits
The geographic bubble chart sets the limits of the basemap to encompass all the points in
your data. These map limits do not change when you resize the chart by resizing the
figure window except to adapt to changes in the chart aspect. The map limits do change
when you zoom in or out or pan. The geographic bubble chart supports properties related
to map limits. Some are read-only properties that are for informational use.

• LatitudeLimits - Returns the current latitude limits (read-only).
• LongitudeLimits - Returns the current longitude limits (read-only).
• MapCenter - Return or set the current map center point.
• ZoomLevel - Return or set the current map zoom level.

A convenient way to get the current latitude and longitude limits is to call the geolimits
function. You can also use the geolimits function to set the latitude and longitude

 Use Geographic Bubble Chart Properties

6-151

limits. Use the geolimits function when you want to create a geographic bubble chart
with the same map limits as an existing chart. Retrieve the limits of the existing chart and
use geolimits to set the limits of the new chart.

Display Several Geographic Bubble Charts Centered Within Specified Limits

This example shows how to create two geographic bubble charts with this same map
limits.

Read Lyme Disease sample data into the workspace.

counties = readtable('counties.xlsx');

Create a geographic bubble chart that plots the occurrences of Lyme disease in New
England counties.

gb = geobubble(counties,'Latitude','Longitude','SizeVariable','Cases2010');

6 Creating Specialized Plots

6-152

Pan and zoom the map until you see only Northern New England. For this example, use
geolimits to set the latitude and longitude limits of the map and the zoom level.

[nlat nlon] = geolimits(gb)

nlat = 1×2

 41.0906 46.8645

nlon = 1×2

 -74.5047 -66.4714

 Use Geographic Bubble Chart Properties

6-153

nzoomlevel = gb.ZoomLevel

nzoomlevel = 5.8952

Create another map with occurrence data for 2011 and set the map limits and zoom level
to match the first chart.

figure
gb2 = geobubble(counties,'Latitude','Longitude','SizeVariable','Cases2011')

gb2 =
 GeographicBubbleChart with properties:

 Basemap: 'darkwater'
 MapLayout: 'normal'
 SourceTable: [67x19 table]
 LatitudeVariable: 'Latitude'
 LongitudeVariable: 'Longitude'
 SizeVariable: 'Cases2011'
 ColorVariable: ''

 Show all properties

[n2lat n2lon] = geolimits(gb2,nlat,nlon)

n2lat = 1×2

 41.0906 46.8645

n2lon = 1×2

 -74.5047 -66.4714

gb2.ZoomLevel = nzoomlevel;

6 Creating Specialized Plots

6-154

See Also
GeographicBubbleChart Properties | discretize | geobubble | geolimits

Related Examples
• “Deploy Geographic Bubble Charts” on page 6-145
• “Access Basemaps in MATLAB” on page 6-157
• “Troubleshoot Geographic Bubble Chart Basemap Connection” on page 6-159
• “Geographic Bubble Charts Overview” on page 6-133

 See Also

6-155

• “Create Geographic Bubble Chart from Tabular Data” on page 6-161

6 Creating Specialized Plots

6-156

Access Basemaps in MATLAB
MathWorks provides several basemaps for use with geographic charts, such as the
geographic bubble chart. One basemap, 'darkwater', is installed with the product. By
default, you access the other basemaps over the Internet. If you do not have a reliable
Internet connection, or your connection is slow, you can download these basemaps onto
your system. In this case, the geographic chart accesses the basemaps locally, which can
improve responsiveness.

To download these geographic bubble chart basemaps:

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Add-
Ons.

2 In the Add-On Explorer, scroll to the MathWorks Features section, and click show
all to find the basemap packages. You can also search for the basemap add-ons by
name (listed in the following table) or click Features in Filter by Type.

3 Select the basemap data packages. For more information about basemaps, see
geobubble.

Basemap Name Basemap Data Package Name
'bluegreen' MATLAB Basemap Data - bluegreen
'grayland' MATLAB Basemap Data - grayland
'colorterrain' MATLAB Basemap Data - colorterrain
'grayterrain' MATLAB Basemap Data - grayterrain
'landcover' MATLAB Basemap Data - landcover

See Also
GeographicBubbleChart Properties | geobubble

Related Examples
• “Use Geographic Bubble Chart Properties” on page 6-146
• “Deploy Geographic Bubble Charts” on page 6-145
• “Troubleshoot Geographic Bubble Chart Basemap Connection” on page 6-159
• “Geographic Bubble Charts Overview” on page 6-133

 Access Basemaps in MATLAB

6-157

• “Create Geographic Bubble Chart from Tabular Data” on page 6-161

6 Creating Specialized Plots

6-158

Troubleshoot Geographic Bubble Chart Basemap
Connection

If you choose a basemap other than 'darkwater', the geographic bubble chart retrieves
the map data over the Internet from the MathWorks. If the chart cannot connect to
MathWorks, you see an error message similar to this:

Warning: Unable to access the Internet, showing 'darkwater' where
'colorterrain' is unavailable. See Access Basemaps in MATLAB.

If you have trouble accessing basemaps over the Internet, check your proxy server
settings on the MATLAB Web Preferences page. The geobubble function supports only
nonauthenticated and basic authentication types for use with your proxy server.

Note You can download basemaps and avoid accessing them over the Internet. See
“Access Basemaps in MATLAB” on page 6-157.

To specify the proxy server settings in MATLAB:

1 On the Home tab, in the Environment section, click Preferences. Select MATLAB
> Web.

2 Select the Use a proxy server to connect to the Internet check box.
3 Specify values for Proxy host and Proxy port. Examples of acceptable formats for

the host are 172.16.10.8 and ourproxy. For the port, enter an integer only, such
as 22. If you do not know the values for your proxy server, ask your system or
network administrator for the information. If your proxy server requires a user name
and password, select the Use a proxy with authentication check box. Then enter
your proxy user name and password. MATLAB stores the password without
encryption in your matlab.prf file.

4 Ensure that your settings work by clicking the Test connection button. MATLAB
attempts to connect to https://www.mathworks.com. If MATLAB can access the
Internet, the word Success! appears next to the button. If MATLAB cannot access
the Internet, the word Failed! appears next to the button. Correct the values you
entered and try again. If you still cannot connect, try using the values you used when
you authenticated your MATLAB license.

5 Click OK to accept the changes.

 Troubleshoot Geographic Bubble Chart Basemap Connection

6-159

To specify system proxy server settings, refer to your Windows documentation for locating
the Internet Options control panel. On the Connections tab, select LAN settings. The
proxy settings are in the Proxy server section. MATLAB does not take into account proxy
exceptions which you configure in Windows. Even if you have specified the correct
credentials in the MATLAB preference panel or in the Windows system proxy settings, you
might see the Proxy Authentication Required error if the proxy server requires an
authentication method other than Basic.

See Also
geobubble

Related Examples
• “Use Geographic Bubble Chart Properties” on page 6-146
• “Deploy Geographic Bubble Charts” on page 6-145
• “Access Basemaps in MATLAB” on page 6-157
• “Geographic Bubble Charts Overview” on page 6-133
• “Create Geographic Bubble Chart from Tabular Data” on page 6-161

6 Creating Specialized Plots

6-160

Create Geographic Bubble Chart from Tabular Data
Geographic bubble charts are a way to visualize data overlaid on a map. For data with
geographic characteristics, these charts can provide much-needed context. In this
example, you import a file into MATLAB® as a table and create a geographic bubble chart
from the table variables (columns). Then you work with the data in the table to visualize
aspects of the data, such as population size.

Import File as Table

Load the sample file counties.xlsx, which contains records of population and Lyme
disease occurrences by county in New England. Read the data into a table using
readtable.

counties = readtable('counties.xlsx');

Create Basic Geographic Bubble Chart

Create a geographic bubble chart that shows the locations of counties in New England.
Specify the table as the first argument, counties. The geographic bubble chart stores
the table in its SourceTable property. The example displays the first five rows of the
table. Use the 'Latitude' and 'Longitude' columns of the table to specify locations.
The chart automatically sets the latitude and longitude limits of the underlying map,
called the basemap, to include only those areas represented by the data. Assign the
GeographicBubbleChart object to the variable gb. Use gb to modify the chart after it
is created.

figure
gb = geobubble(counties,'Latitude','Longitude');

 Create Geographic Bubble Chart from Tabular Data

6-161

head(gb.SourceTable, 5)

ans=5×19 table
 FIPS ANSICODE Latitude Longitude CountyName State StateName Population2010 HousingUnits2010 LandArea WaterArea Cases2010 Cases2011 Cases2012 Cases2013 Cases2014 Cases2015 Cases2014_1 Cases2015_1
 ____ __________ ________ _________ ___________________ _____ _____________ ______________ ________________ __________ __________ _________ _________ _________ _________ _________ _________ ___________ ___________

 9001 2.1279e+05 41.228 -73.367 'Fairfield County' 'CT' 'Connecticut' 9.1683e+05 3.6122e+05 1.6185e+09 5.4916e+08 331 305 225 443 437 427 437 427
 9003 2.1234e+05 41.806 -72.733 'Hartford County' 'CT' 'Connecticut' 8.9401e+05 3.7425e+05 1.9039e+09 4.0213e+07 187 167 143 288 291 335 291 335
 9005 2.128e+05 41.792 -73.235 'Litchfield County' 'CT' 'Connecticut' 1.8993e+05 87550 2.3842e+09 6.2166e+07 88 118 67 187 168 202 168 202
 9007 2.128e+05 41.435 -72.524 'Middlesex County' 'CT' 'Connecticut' 1.6568e+05 74837 9.5649e+08 1.8068e+08 125 109 93 181 155 241 155 241
 9009 2.128e+05 41.35 -72.9 'New Haven County' 'CT' 'Connecticut' 8.6248e+05 3.62e+05 1.5657e+09 6.6705e+08 240 249 213 388 459 474 459 474

6 Creating Specialized Plots

6-162

You can pan and zoom in and out on the basemap displayed by the geobubble function.
geobubble displays the data over a default basemap. To use another basemap, you must
have an Internet connection or you must have previously downloaded the basemaps from
MathWorks.

Visualize County Populations on the Chart

Use bubble size (diameter) to indicate the relative populations of the different counties.
Specify the Population2010 variable in the table as the value of the SizeVariable
parameter. In the resultant geographic bubble chart, the bubbles have different sizes to
indicate population. The chart includes a legend that describes how diameter expresses
size.

figure
gb = geobubble(counties,'Latitude','Longitude',...
 'SizeVariable','Population2010');

 Create Geographic Bubble Chart from Tabular Data

6-163

geobubble scales the bubble diameters linearly between the values specified by the
SizeLimits property.

Visualize Lyme Disease Cases by County

Use bubble color to show the number of Lyme disease cases in a county for a given year.
To display this type of data, the geobubble function requires that the data be a
categorical value. Initially, none of the columns in the table are categorical but you can
create one. For example, you can use the discretize function to create a categorical
variable from the data in the Cases2010 variable. The new variable, named Severity,
groups the data into three categories: Low, Medium, and High. Use this new variable as
the ColorVariable parameter. These changes modify the table stored in the
SourceTable property, which is a copy of the original table in the workspace, counties.

6 Creating Specialized Plots

6-164

Making changes to the table stored in the GeographicBubbleChart object avoids
affecting the original data.

gb.SourceTable.Severity = discretize(counties.Cases2010,[0 50 100 500],...
 'categorical', {'Low', 'Medium', 'High'});
gb.ColorVariable = 'Severity';

Handle Undefined Data

When you plot the severity information, a fourth category appears in the color legend:
undefined. This category can appear when the data you cast to categorical contains
empty values or values that are out of scope for the categories you defined. To determine
what caused this undefined Severity value, view the data tip for an undefined bubble. You
see that it represents values in the 33rd row of the Lyme disease table.

 Create Geographic Bubble Chart from Tabular Data

6-165

Check the value of the variable used for Severity, Cases2010, which is the 12th variable in
the 33rd row of the Lyme disease table.

gb.SourceTable(33,12)

ans=1×1 table
 Cases2010

 514

The High category is defined as values between 100 and 500. However, the value of the
Cases2010 variable is 514. To eliminate this undefined value, reset the upper limit of the
High category to include this value. For example, use 5000.

gb.SourceTable.Severity = discretize(counties.Cases2010,[0 50 100 5000],...
 'categorical', {'Low', 'Medium', 'High'});

6 Creating Specialized Plots

6-166

Unlike the color variable, when geobubble encounters an undefined number (NaN) in
the size, latitude, or longitude variables, it ignores the value.

Choose Bubble Colors

Use a color gradient to represent the Low-Medium-High categorization. geobubble
stores the colors as an m-by-3 list of RGB values in the BubbleColorList property.

gb.BubbleColorList = autumn(3);

 Create Geographic Bubble Chart from Tabular Data

6-167

Reorder Bubble Colors

Change the color indicating high severity to be red rather than yellow. To change the
color order, you can change the ordering of either the categories or the colors listed in
the BubbleColorList property. For example, initially the categories are ordered Low-
Medium-High. Use the reordercats function to change the categories to High-Medium-
Low. The categories change in the color legend.

neworder = {'High','Medium','Low'};
gb.SourceTable.Severity = reordercats(gb.SourceTable.Severity,neworder);

6 Creating Specialized Plots

6-168

Adding Titles

When you display a geographic bubble chart with size and color variables, the chart
displays a size legend and color legend to indicate what the relative sizes and colors
mean. When you specify a table as an argument, geobubble automatically uses the table
variable names as legend titles, but you can specify other titles using properties.

title 'Lyme Disease in New England, 2010'
gb.SizeLegendTitle = 'County Population';
gb.ColorLegendTitle = 'Lyme Disease Severity';

 Create Geographic Bubble Chart from Tabular Data

6-169

Refine Chart Data

Looking at the Lyme disease data, the trend appears to be that more cases occur in more
densely populated areas. Looking at locations with the most cases per capita might be
more interesting. Calculate the cases per 1000 people and display it on the chart.

gb.SourceTable.CasesPer1000 = gb.SourceTable.Cases2010 ./ gb.SourceTable.Population2010 * 1000;
gb.SizeVariable = 'CasesPer1000';
gb.SizeLegendTitle = 'Cases Per 1000';

6 Creating Specialized Plots

6-170

The bubble sizes now tell a different story than before. The areas with the largest
populations tracked relatively well with the different severity levels. However, when
looking at the number of cases normalized by population, it appears that the highest risk
per capita has a different geographic distribution.

See Also
GeographicBubbleChart Properties | categorical | discretize | geobubble |
readtable | reordercats | table

 See Also

6-171

Related Examples
• “Use Geographic Bubble Chart Properties” on page 6-146
• “Deploy Geographic Bubble Charts” on page 6-145
• “Access Basemaps in MATLAB” on page 6-157
• “Troubleshoot Geographic Bubble Chart Basemap Connection” on page 6-159
• “Geographic Bubble Charts Overview” on page 6-133

6 Creating Specialized Plots

6-172

Displaying Bit-Mapped Images

• “Working with Images in MATLAB Graphics” on page 7-2
• “Image Types” on page 7-5
• “8-Bit and 16-Bit Images” on page 7-10
• “Read, Write, and Query Image Files” on page 7-18
• “Displaying Graphics Images” on page 7-22
• “The Image Object and Its Properties” on page 7-27
• “Printing Images” on page 7-35
• “Convert Image Graphic or Data Type” on page 7-36

7

Working with Images in MATLAB Graphics
In this section...
“What Is Image Data?” on page 7-2
“Supported Image Formats” on page 7-3

What Is Image Data?
The basic MATLAB data structure is the array, an ordered set of real or complex
elements. An array is naturally suited to the representation of images, real-valued,
ordered sets of color or intensity data. (An array is suited for complex-valued images.)

In the MATLAB workspace, most images are represented as two-dimensional arrays
(matrices), in which each element of the matrix corresponds to a single pixel in the
displayed image. For example, an image composed of 200 rows and 300 columns of
different colored dots stored as a 200-by-300 matrix. Some images, such as RGB, require
a three-dimensional array, where the first plane in the third dimension represents the red
pixel intensities, the second plane represents the green pixel intensities, and the third
plane represents the blue pixel intensities.

This convention makes working with graphics file format images similar to working with
any other type of matrix data. For example, you can select a single pixel from an image
matrix using normal matrix subscripting:

I(2,15)

This command returns the value of the pixel at row 2, column 15 of the image I.

The following sections describe the different data and image types, and give details about
how to read, write, work with, and display graphics images; how to alter the display
properties and aspect ratio of an image during display; how to print an image; and how to
convert the data type or graphics format of an image.

Data Types

MATLAB math supports three different numeric classes for image display:

• double-precision floating-point (double)
• 16-bit unsigned integer (uint16)

7 Displaying Bit-Mapped Images

7-2

• 8-bit unsigned integer (uint8)

The image display commands interpret data values differently depending on the numeric
class the data is stored in. “8-Bit and 16-Bit Images” on page 7-10 includes details on the
inner workings of the storage for 8- and 16-bit images.

By default, most data occupy arrays of class double. The data in these arrays is stored as
double-precision (64-bit) floating-point numbers. All MATLAB functions and capabilities
work with these arrays.

For images stored in one of the graphics file formats supported by MATLAB functions,
however, this data representation is not always ideal. The number of pixels in such an
image can be very large; for example, a 1000-by-1000 image has a million pixels. Since at
least one array element represents each pixel , this image requires about 8 megabytes of
memory if it is stored as class double.

To reduce memory requirements, you can store image data in arrays of class uint8 and
uint16. The data in these arrays is stored as 8-bit or 16-bit unsigned integers. These
arrays require one-eighth or one-fourth as much memory as data in double arrays.

Bit Depth

MATLAB input functions read the most commonly used bit depths (bits per pixel) of any of
the supported graphics file formats. When the data is in memory, it can be stored as
uint8, uint16, or double. For details on which bit depths are appropriate for each
supported format, see imread and imwrite.

Supported Image Formats
MATLAB commands read, write, and display several types of graphics file formats for
images. As with MATLAB generated images, once a graphics file format image is
displayed, it becomes an image object. MATLAB supports the following graphics file
formats, along with others:

• BMP (Microsoft® Windows® Bitmap)
• GIF (Graphics Interchange Files)
• HDF (Hierarchical Data Format)
• JPEG (Joint Photographic Experts Group)
• PCX (Paintbrush)

 Working with Images in MATLAB Graphics

7-3

• PNG (Portable Network Graphics)
• TIFF (Tagged Image File Format)
• XWD (X Window Dump)

For more information about the bit depths and image types supported for these formats,
see imread and imwrite.

7 Displaying Bit-Mapped Images

7-4

Image Types
In this section...
“Indexed Images” on page 7-5
“Intensity Images” on page 7-7
“RGB (Truecolor) Images” on page 7-8

Indexed Images
An indexed image consists of a data matrix, X, and a colormap matrix, map. map is an m-
by-3 array of class double containing floating-point values in the range [0, 1]. Each row
of map specifies the red, green, and blue components of a single color. An indexed image
uses “direct mapping” of pixel values to colormap values. The color of each image pixel is
determined by using the corresponding value of X as an index into map. Values of X
therefore must be integers. The value 1 points to the first row in map, the value 2 points
to the second row, and so on. Display an indexed image with the statements

image(X); colormap(map)

A colormap is often stored with an indexed image and is automatically loaded with the
image when you use the imread function. However, you are not limited to using the
default colormap—use any colormap that you choose. The description for the property
CDataMapping describes how to alter the type of mapping used.

The next figure illustrates the structure of an indexed image. The pixels in the image are
represented by integers, which are pointers (indices) to color values stored in the
colormap.

 Image Types

7-5

The relationship between the values in the image matrix and the colormap depends on the
class of the image matrix. If the image matrix is of class double, the value 1 points to the
first row in the colormap, the value 2 points to the second row, and so on. If the image
matrix is of class uint8 or uint16, there is an offset—the value 0 points to the first row
in the colormap, the value 1 points to the second row, and so on. The offset is also used in
graphics file formats to maximize the number of colors that can be supported. In the
preceding image, the image matrix is of class double. Because there is no offset, the
value 5 points to the fifth row of the colormap.

Note When using the painters renderer on the Windows platform, you should only use
256 colors when attempting to display an indexed image. Larger colormaps can lead to
unexpected colors because the painters algorithm uses the Windows 256 color palette,
which graphics drivers and graphics hardware are known to handle differently. To work
around this issue, use the Zbuffer or OpenGL renderer, as appropriate.

7 Displaying Bit-Mapped Images

7-6

Intensity Images
An intensity image is a data matrix, I, whose values represent intensities within some
range. An intensity image is represented as a single matrix, with each element of the
matrix corresponding to one image pixel. The matrix can be of class double, uint8, or
uint16. While intensity images are rarely saved with a colormap, a colormap is still used
to display them. In essence, intensity images are treated as indexed images.

This figure depicts an intensity image of class double.

To display an intensity image, use the imagesc (“image scale”) function, which enables
you to set the range of intensity values. imagesc scales the image data to use the full
colormap. Use the two-input form of imagesc to display an intensity image, for example:

imagesc(I,[0 1]); colormap(gray);

The second input argument to imagesc specifies the desired intensity range. The
imagesc function displays I by mapping the first value in the range (usually 0) to the
first colormap entry, and the second value (usually 1) to the last colormap entry. Values in
between are linearly distributed throughout the remaining colormap colors.

 Image Types

7-7

Although it is conventional to display intensity images using a grayscale colormap, it is
possible to use other colormaps. For example, the following statements display the
intensity image I in shades of blue and green:

imagesc(I,[0 1]); colormap(winter);

To display a matrix A with an arbitrary range of values as an intensity image, use the
single-argument form of imagesc. With one input argument, imagesc maps the
minimum value of the data matrix to the first colormap entry, and maps the maximum
value to the last colormap entry. For example, these two lines are equivalent:

imagesc(A); colormap(gray)
imagesc(A,[min(A(:)) max(A(:))]); colormap(gray)

RGB (Truecolor) Images
An RGB image, sometimes referred to as a truecolor image, is stored as an m-by-n-by-3
data array that defines red, green, and blue color components for each individual pixel.
RGB images do not use a palette. The color of each pixel is determined by the
combination of the red, green, and blue intensities stored in each color plane at the
pixel's location. Graphics file formats store RGB images as 24-bit images, where the red,
green, and blue components are 8 bits each. This yields a potential of 16 million colors.
The precision with which a real-life image can be replicated has led to the nickname
“truecolor image.”

An RGB MATLAB array can be of class double, uint8, or uint16. In an RGB array of
class double, each color component is a value between 0 and 1. A pixel whose color
components are (0,0,0) is displayed as black, and a pixel whose color components are
(1,1,1) is displayed as white. The three color components for each pixel are stored along
the third dimension of the data array. For example, the red, green, and blue color
components of the pixel (10,5) are stored in RGB(10,5,1), RGB(10,5,2), and
RGB(10,5,3), respectively.

To display the truecolor image RGB, use the image function:

image(RGB)

The next figure shows an RGB image of class double.

7 Displaying Bit-Mapped Images

7-8

To determine the color of the pixel at (2,3), look at the RGB triplet stored in (2,3,1:3).
Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains 0.1608, and (2,3,3) contains
0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

 Image Types

7-9

8-Bit and 16-Bit Images
In this section...
“Indexed Images” on page 7-10
“Intensity Images” on page 7-11
“RGB Images” on page 7-11
“Mathematical Operations Support for uint8 and uint16” on page 7-12
“Other 8-Bit and 16-Bit Array Support” on page 7-12
“Converting an 8-Bit RGB Image to Grayscale” on page 7-13
“Summary of Image Types and Numeric Classes” on page 7-17

Indexed Images
Double-precision (64-bit) floating-point numbers are the default MATLAB representation
for numeric data. However, to reduce memory requirements for working with images, you
can store images as 8-bit or 16-bit unsigned integers using the numeric classes uint8 or
uint16, respectively. An image whose data matrix has class uint8 is called an 8-bit
image; an image whose data matrix has class uint16 is called a 16-bit image.

The image function can display 8- or 16-bit images directly without converting them to
double precision. However, image interprets matrix values slightly differently when the
image matrix is uint8 or uint16. The specific interpretation depends on the image type.

If the class of X is uint8 or uint16, its values are offset by 1 before being used as
colormap indices. The value 0 points to the first row of the colormap, the value 1 points to
the second row, and so on. The image command automatically supplies the proper offset,
so the display method is the same whether X is double, uint8, or uint16:

image(X); colormap(map);

The colormap index offset for uint8 and uint16 data is intended to support standard
graphics file formats, which typically store image data in indexed form with a 256-entry
colormap. The offset allows you to manipulate and display images of this form using the
more memory-efficient uint8 and uint16 arrays.

Because of the offset, you must add 1 to convert a uint8 or uint16 indexed image to
double. For example:

7 Displaying Bit-Mapped Images

7-10

X64 = double(X8) + 1;
 or
X64 = double(X16) + 1;

Conversely, subtract 1 to convert a double indexed image to uint8 or uint16:

X8 = uint8(X64 - 1);
 or
X16 = uint16(X64 - 1);

Intensity Images
The range of double image arrays is usually [0, 1], but the range of 8-bit intensity images
is usually [0, 255] and the range of 16-bit intensity images is usually [0, 65535]. Use the
following command to display an 8-bit intensity image with a grayscale colormap:

imagesc(I,[0 255]); colormap(gray);

To convert an intensity image from double to uint16, first multiply by 65535:

I16 = uint16(round(I64*65535));

Conversely, divide by 65535 after converting a uint16 intensity image to double:

I64 = double(I16)/65535;

RGB Images
The color components of an 8-bit RGB image are integers in the range [0, 255] rather
than floating-point values in the range [0, 1]. A pixel whose color components are
(255,255,255) is displayed as white. The image command displays an RGB image
correctly whether its class is double, uint8, or uint16:

image(RGB);

To convert an RGB image from double to uint8, first multiply by 255:

RGB8 = uint8(round(RGB64*255));

Conversely, divide by 255 after converting a uint8 RGB image to double:

RGB64 = double(RGB8)/255

To convert an RGB image from double to uint16, first multiply by 65535:

 8-Bit and 16-Bit Images

7-11

RGB16 = uint16(round(RGB64*65535));

Conversely, divide by 65535 after converting a uint16 RGB image to double:

RGB64 = double(RGB16)/65535;

Mathematical Operations Support for uint8 and uint16
To use the following MATLAB functions with uint8 and uint16 data, first convert the
data to type double:

• conv2
• convn
• fft2
• fftn

For example, if X is a uint8 image, cast the data to type double:

fft(double(X))

In these cases, the output is always double.

The sum function returns results in the same type as its input, but provides an option to
use double precision for calculations.

MATLAB Integer Mathematics

See “Arithmetic Operations on Integer Classes” for more information on how
mathematical functions work with data types that are not doubles.

Most Image Processing Toolbox™ functions accept uint8 and uint16 input. If you plan
to do sophisticated image processing on uint8 or uint16 data, consider including that
toolbox in your MATLAB computing environment.

Other 8-Bit and 16-Bit Array Support
You can perform several other operations on uint8 and uint16 arrays, including:

• Reshaping, reordering, and concatenating arrays using the functions reshape, cat,
permute, and the [] and ' operators

7 Displaying Bit-Mapped Images

7-12

• Saving and loading uint8 and uint16 arrays in MAT-files using save and load.
(Remember that if you are loading or saving a graphics file format image, you must
use the commands imread and imwrite instead.)

• Locating the indices of nonzero elements in uint8 and uint16 arrays using find.
However, the returned array is always of class double.

• Relational operators

Converting an 8-Bit RGB Image to Grayscale
You can perform arithmetic operations on integer data, which enables you to convert
image types without first converting the numeric class of the image data.

This example reads an 8-bit RGB image into a MATLAB variable and converts it to a
grayscale image:

rgb_img = imread('ngc6543a.jpg'); % Load the image
image(rgb_img) % Display the RGB image

axis image;

 8-Bit and 16-Bit Images

7-13

Note This image was created with the support of the Space Telescope Science Institute,
operated by the Association of Universities for Research in Astronomy, Inc., from NASA
contract NAs5-26555, and is reproduced with permission from AURA/STScI. Digital
renditions of images produced by AURA/STScI are obtainable royalty-free. Credits: J.P.
Harrington and K.J. Orkowski (University of Maryland), and NASA.

Calculate the monochrome luminance by combining the RGB values according to the
NTSC standard, which applies coefficients related to the eye's sensitivity to RGB colors:

7 Displaying Bit-Mapped Images

7-14

I = .2989*rgb_img(:,:,1)...
 +.5870*rgb_img(:,:,2)...
 +.1140*rgb_img(:,:,3);

I is an intensity image with integer values ranging from a minimum of zero:

min(I(:))
ans =
 0

to a maximum of 255:

max(I(:))
ans =
 255

To display the image, use a grayscale colormap with 256 values. This avoids the need to
scale the data-to-color mapping, which is required if you use a colormap of a different
size. Use the imagesc function in cases where the colormap does not contain one entry
for each data value.

Now display the image in a new figure using the gray colormap:

figure; colormap(gray(256)); image(I);
axis image;

 8-Bit and 16-Bit Images

7-15

Related Information

Other colormaps with a range of colors that vary continuously from dark to light can
produce usable images. For example, try colormap(summer(256)) for a classic
oscilloscope look. See colormap for more choices.

The brighten function enables you to increase or decrease the color intensities in a
colormap to compensate for computer display differences or to enhance the visibility of
faint or bright regions of the image (at the expense of the opposite end of the range).

7 Displaying Bit-Mapped Images

7-16

Summary of Image Types and Numeric Classes
This table summarizes how data matrix elements are interpreted as pixel colors,
depending on the image type and data class.

Image Type double Data uint8 or uint16 Data
Indexed Image is an m-by-n array of

integers in the range [1, p].

Colormap is a p-by-3 array of
floating-point values in the range
[0, 1].

Image is an m-by-n array of
integers in the range [0, p –1].

Colormap is a p-by-3 array of
floating-point values in the range
[0, 1].

Intensity Image is an m-by-n array of
floating-point values that are
linearly scaled to produce
colormap indices. The typical
range of values is [0, 1].

Colormap is a p-by-3 array of
floating-point values in the range
[0, 1] and is typically grayscale.

Image is an m-by-n array of
integers that are linearly scaled to
produce colormap indices. The
typical range of values is [0, 255]
or [0, 65535].

Colormap is a p-by-3 array of
floating-point values in the range
[0, 1] and is typically grayscale.

RGB (Truecolor) Image is an m-by-n-by-3 array of
floating-point values in the range
[0, 1].

Image is an m-by-n-by-3 array of
integers in the range [0, 255] or
[0, 65535].

 8-Bit and 16-Bit Images

7-17

Read, Write, and Query Image Files
In this section...
“Working with Image Formats” on page 7-18
“Reading a Graphics Image” on page 7-19
“Writing a Graphics Image” on page 7-19
“Subsetting a Graphics Image (Cropping)” on page 7-20
“Obtaining Information About Graphics Files” on page 7-21

Working with Image Formats
In its native form, a graphics file format image is not stored as a MATLAB matrix, or even
necessarily as a matrix. Most graphics files begin with a header containing format-specific
information tags, and continue with bitmap data that can be read as a continuous stream.
For this reason, you cannot use the standard MATLAB I/O commands load and save to
read and write a graphics file format image.

Call special MATLAB functions to read and write image data from graphics file formats:

• To read a graphics file format image use imread.
• To write a graphics file format image, use imwrite.
• To obtain information about the nature of a graphics file format image, use imfinfo.

This table gives a clearer picture of which MATLAB commands should be used with which
image types.

Procedure Functions to Use
Load or save a matrix as a MAT-file. load

save
Load or save graphics file format image, e.g., BMP, TIFF. imread

imwrite
Display any image loaded into the MATLAB workspace. image

imagesc

7 Displaying Bit-Mapped Images

7-18

Procedure Functions to Use
Utilities imfinfo

ind2rgb

Reading a Graphics Image
The imread function reads an image from any supported graphics image file in any of the
supported bit depths. Most of the images that you read are 8-bit. When these are read
into memory, they are stored as class uint8. The main exception to this rule is MATLAB
support for 16-bit data for PNG and TIFF images; if you read a 16-bit PNG or TIFF image,
it is stored as class uint16.

Note For indexed images, imread always reads the colormap into an array of class
double, even though the image array itself can be of class uint8 or uint16.

The following commands read the image ngc6543a.jpg into the workspace variable RGB
and then displays the image using the image function:

RGB = imread('ngc6543a.jpg');
image(RGB)

You can write (save) image data using the imwrite function. The statements

load clown % An image that is included with MATLAB
imwrite(X,map,'clown.bmp')

create a BMP file containing the clown image.

Writing a Graphics Image
When you save an image using imwrite, the default behavior is to automatically reduce
the bit depth to uint8. Many of the images used in MATLAB are 8-bit, and most graphics
file format images do not require double-precision data. One exception to the rule for
saving the image data as uint8 is that PNG and TIFF images can be saved as uint16.
Because these two formats support 16-bit data, you can override the MATLAB default
behavior by specifying uint16 as the data type for imwrite. The following example
shows writing a 16-bit PNG file using imwrite.

 Read, Write, and Query Image Files

7-19

imwrite(I,'clown.png','BitDepth',16);

Subsetting a Graphics Image (Cropping)
Sometimes you want to work with only a portion of an image file or you want to break it
up into subsections. Specify the intrinsic coordinates of the rectangular subsection you
want to work with and save it to a file from the command line. If you do not know the
coordinates of the corner points of the subsection, choose them interactively, as the
following example shows:

% Read RGB image from graphics file.
im = imread('street2.jpg');

% Display image with true aspect ratio
image(im); axis image

% Use ginput to select corner points of a rectangular
% region by pointing and clicking the mouse twice
p = ginput(2);

% Get the x and y corner coordinates as integers
sp(1) = min(floor(p(1)), floor(p(2))); %xmin
sp(2) = min(floor(p(3)), floor(p(4))); %ymin
sp(3) = max(ceil(p(1)), ceil(p(2))); %xmax
sp(4) = max(ceil(p(3)), ceil(p(4))); %ymax

% Index into the original image to create the new image
MM = im(sp(2):sp(4), sp(1): sp(3),:);

% Display the subsetted image with appropriate axis ratio
figure; image(MM); axis image

% Write image to graphics file.
imwrite(MM,'street2_cropped.tif')

If you know what the image corner coordinates should be, you can manually define sp in
the preceding example rather than using ginput.

You can also display a “rubber band box” as you interact with the image to subset it. See
the code example for rbbox for details. For further information, see the documentation
for the ginput and image functions.

7 Displaying Bit-Mapped Images

7-20

Obtaining Information About Graphics Files
The imfinfo function enables you to obtain information about graphics files in any of the
standard formats listed earlier. The information you obtain depends on the type of file, but
it always includes at least the following:

• Name of the file, including the folder path if the file is not in the current folder
• File format
• Version number of the file format
• File modification date
• File size in bytes
• Image width in pixels
• Image height in pixels
• Number of bits per pixel
• Image type: RGB (truecolor), intensity (grayscale), or indexed

 Read, Write, and Query Image Files

7-21

Displaying Graphics Images
In this section...
“Image Types and Display Methods” on page 7-22
“Controlling Aspect Ratio and Display Size” on page 7-24

Image Types and Display Methods
To display a graphics file image, use either image or imagesc. For example, read the
image ngc6543a.jpg to a variable RGB and display the image using the image function.
Change the axes aspect ratio to the true ratio using axis command.

RGB = imread('ngc6543a.jpg');
image(RGB);
axis image;

7 Displaying Bit-Mapped Images

7-22

This table summarizes display methods for the three types of images.

Image Type Display Commands Uses Colormap Colors
Indexed image(X); colormap(map) Yes
Intensity imagesc(I,[0 1]);

colormap(gray)
Yes

RGB (truecolor) image(RGB) No

 Displaying Graphics Images

7-23

Controlling Aspect Ratio and Display Size
The image function displays the image in a default-sized figure and axes. The image
stretches or shrinks to fit the display area. Sometimes you want the aspect ratio of the
display to match the aspect ratio of the image data matrix. The easiest way to do this is
with the axis image command.

For example, these commands display the earth image using the default figure and axes
positions:

load earth
image(X)
colormap(map)

7 Displaying Bit-Mapped Images

7-24

The elongated globe results from stretching the image display to fit the axes position. Use
the axis image command to force the aspect ratio to be one-to-one.

axis image

The axis image command works by setting the DataAspectRatio property of the axes
object to [1 1 1]. See axis and axes for more information on how to control the
appearance of axes objects.

Sometimes you want to display an image so that each element in the data matrix
corresponds to a single screen pixel. To display an image with this one-to-one matrix-
element-to-screen-pixel mapping, use imshow. For example, this command displays the
earth image so that one data element corresponds to one screen pixel:

 Displaying Graphics Images

7-25

imshow(X,map)

7 Displaying Bit-Mapped Images

7-26

The Image Object and Its Properties
In this section...
“Image CData” on page 7-27
“Image CDataMapping” on page 7-27
“XData and YData” on page 7-28
“Add Text to Image Data” on page 7-31
“Additional Techniques for Fast Image Updating” on page 7-33

Image CData

Note The image and imagesc commands create image objects. Image objects are
children of axes objects, as are line, patch, surface, and text objects. Like all graphics
objects, the image object has a number of properties you can set to fine-tune its
appearance on the screen. The most important properties of the image object with
respect to appearance are CData, CDataMapping, XData, and YData. These properties
are discussed in this and the following sections. For detailed information about these and
all the properties of the image object, see image.

The CData property of an image object contains the data array. In the following
commands, h is the handle of the image object created by image, and the matrices X and
Y are the same:

h = image(X); colormap(map)
Y = get(h,'CData');

The dimensionality of the CData array controls whether the image displays using
colormap colors or as an RGB image. If the CData array is two-dimensional, the image is
either an indexed image or an intensity image; in either case, the image is displayed using
colormap colors. If, on the other hand, the CData array is m-by-n-by-3, it displays as a
truecolor image, ignoring the colormap colors.

Image CDataMapping
The CDataMapping property controls whether an image is indexed or intensity. To
display an indexed image set the CDataMapping property to 'direct', so that the

 The Image Object and Its Properties

7-27

values of the CData array are used directly as indices into the figure's colormap. When
the image command is used with a single input argument, it sets the value of
CDataMapping to 'direct':

h = image(X); colormap(map)
get(h,'CDataMapping')
ans =

direct

Intensity images are displayed by setting the CDataMapping property to 'scaled'. In
this case, the CData values are linearly scaled to form colormap indices. The axes CLim
property controls the scale factors. The imagesc function creates an image object whose
CDataMapping property is set to 'scaled', and it adjusts the CLim property of the
parent axes. For example:

h = imagesc(I,[0 1]); colormap(map)
get(h,'CDataMapping')
ans =

scaled

get(gca,'CLim')
ans =

[0 1]

XData and YData
The XData and YData properties control the coordinate system of the image. For an m-
by-n image, the default XData is [1 n] and the default YData is [1 m]. These settings
imply the following:

• The left column of the image has an x-coordinate of 1.
• The right column of the image has an x-coordinate of n.
• The top row of the image has a y-coordinate of 1.
• The bottom row of the image has a y-coordinate of m.

7 Displaying Bit-Mapped Images

7-28

Coordinate System for Images

Use Default Coordinate System

Display an image using the default coordinate system. Use colors from the colorcube
map.

C = [1 2 3 4; 5 6 7 8; 9 10 11 12];
im = image(C);
colormap(colorcube)

 The Image Object and Its Properties

7-29

Specify Coordinate System

Display an image and specify the coordinate system. Use colors from the colorcube
map.

C = [1 2 3 4; 5 6 7 8; 9 10 11 12];
x = [-1 2];
y = [2 4];
figure
image(x,y,C)
colormap(colorcube)

7 Displaying Bit-Mapped Images

7-30

Add Text to Image Data
This example shows how to use array indexing to rasterize text into an existing image.

Draw the text in an axes using the text function. Then, capture the text from the screen
using getframe and close the figure.

fig = figure;
t = text(.05,.1,'Mandrill Face','FontSize',20,'FontWeight','bold');
F = getframe(gca,[10 10 200 200]);
close(fig)

Select any plane of the resulting RGB image returned by getframe. Find the pixels that
are black (black is 0) and convert their subscripts to indexes using sub2ind. Use these

 The Image Object and Its Properties

7-31

subscripts to "paint" the text into the image contained in the mandrill MAT-file. Use the
size of that image, plus the row and column locations of the text to determine the
locations in the new image. Index into new image, replacing pixels.

c = F.cdata(:,:,1);
[i,j] = find(c==0);
load mandrill
ind = sub2ind(size(X),i,j);
X(ind) = uint8(255);

Display the new image using the bone colormap.

imagesc(X)
colormap bone

7 Displaying Bit-Mapped Images

7-32

Additional Techniques for Fast Image Updating
To increase the rate at which the CData property of an image object updates, optimize
CData and set some related figure and axes properties:

• Use the smallest data type possible. Using a uint8 data type for your image will be
faster than using a double data type.

Part of the process of setting the image's CData property includes copying the matrix
for the image's use. The overall size of the matrix is dependent on the size of its
individual elements. Using smaller individual elements (i.e., a smaller data type)
decreases matrix size, and reduces the amount of time needed to copy the matrix.

 The Image Object and Its Properties

7-33

• Use the smallest acceptable matrix.

If the speed at which the image is displayed is your highest priority, you may need to
compromise on the size and quality of the image. Again, decreasing the size reduces
the time needed to copy the matrix.

• Set the limit mode properties (XLimMode and YLimMode) of your axes to manual.

If they are set to auto, then every time an object (such as an image, line, patch, etc.)
changes some aspect of its data, the axes must recalculate its related properties. For
example, if you specify

image(firstimage);
set(gca, 'xlimmode','manual',...
'ylimmode','manual',...
'zlimmode','manual',...
'climmode','manual',...
'alimmode','manual');

the axes do not recalculate any of the limit values before redrawing the image.
• Consider using a movie object if the main point of your task is to simply display a

series of images onscreen.

The MATLAB movie object utilizes underlying system graphics resources directly,
instead of executing MATLAB object code. This is faster than repeatedly setting an
image's CData property, as described earlier.

7 Displaying Bit-Mapped Images

7-34

Printing Images
When you set the axes Position to [0 0 1 1] so that it fills the entire figure, the
aspect ratio is not preserved when you print because MATLAB printing software adjusts
the figure size when printing according to the figure's PaperPosition property. To
preserve the image aspect ratio when printing, set the figure's PaperPositionMode to
'auto' from the command line.

set(gcf,'PaperPositionMode','auto')
print

When PaperPositionMode is set to 'auto', the width and height of the printed figure
are determined by the figure's dimensions on the screen, and the figure position is
adjusted to center the figure on the page. If you want the default value of
PaperPositionMode to be 'auto', enter this line in your startup.m file.

set(groot,'defaultFigurePaperPositionMode','auto')

 Printing Images

7-35

Convert Image Graphic or Data Type
Converting between data types changes the interpretation of the image data. If you want
the resulting array to be interpreted properly as image data, rescale or offset the data
when you convert it. (See the earlier sections “Image Types” on page 7-5 and “Indexed
Images” on page 7-10 for more information about offsets.)

For certain operations, it is helpful to convert an image to a different image type. For
example, to filter a color image that is stored as an indexed image, first convert it to RGB
format. To do this efficiently, use the ind2rgb function. When you apply the filter to the
RGB image, the intensity values in the image are filtered, as is appropriate. If you attempt
to filter the indexed image, the filter is applied to the indices in the indexed image matrix,
and the results may not be meaningful.

You can also perform certain conversions just using MATLAB syntax. For example, to
convert a grayscale image to RGB, concatenate three copies of the original matrix along
the third dimension:

RGB = cat(3,I,I,I);

The resulting RGB image has identical matrices for the red, green, and blue planes, so the
image appears as shades of gray.

Changing the graphics format of an image, perhaps for compatibility with another
software product, is very straightforward. For example, to convert an image from a BMP
to a PNG, load the BMP using imread, set the data type to uint8, uint16, or double,
and then save the image using imwrite, with 'PNG' specified as your target format. See
imread and imwrite for the specifics of which bit depths are supported for the different
graphics formats, and for how to specify the format type when writing an image to file.

7 Displaying Bit-Mapped Images

7-36

Printing and Saving

• “Print Figure from File Menu” on page 8-2
• “Copy Figure to Clipboard from Edit Menu” on page 8-7
• “Customize Figure Interactively Before Saving” on page 8-11
• “Save Figure to Open in Another Application” on page 8-19
• “Save Figure Preserving Background Color” on page 8-24
• “Save Figure at Specific Size and Resolution” on page 8-27
• “Save Figure to Reopen in MATLAB Later” on page 8-33
• “Save Axes Without Saving UIControls” on page 8-36
• “Save Figure with Minimal White Space” on page 8-40

8

Print Figure from File Menu

In this section...
“Simple Printout” on page 8-2
“Preserve Background Color and Tick Values” on page 8-2
“Figure Size and Placement” on page 8-3
“Line Width and Font Size” on page 8-5

Simple Printout
To print a figure, use File > Print. For example, create a bar chart to print.

x = [3 5 2 6 1 8 2 3];
bar(x)

Click File > Print, select a printer, and click OK. The printer must be set up on your
system. If you do not see a printer that is set up already, then restart MATLAB.

To print the figure programmatically, use the print function.

Preserve Background Color and Tick Values
Some details of the printed figure can look different from the figure on the display. By
default, printed figures use a white figure background color. Also, if the printed figure
size is different from the original figure size, then the axis limits and tick values can differ.

• Preserve the figure background color by clicking File > Print Preview > Color tab.
Select Same as figure for the background color. Select Color for the color scale.

• Preserve the axis limits and tick value locations by clicking File > Print Preview >
Advanced tab. Then, for the Axis limits and ticks option, select Keep screen limits
and ticks.

To retain the color scheme programmatically, set the InvertHardcopy property of the
figure to 'off'. To keep the same axis limits and tick marks, set the XTickMode,
YTickMode, and ZTickMode properties for the axes to 'manual'.

8 Printing and Saving

8-2

Figure Size and Placement
To print a figure with specific dimensions, click File > Print Preview > Layout tab.
Then, for the Placement option, select Use manual size and position. Specify the
dimensions you want in the text boxes. Alternatively, use the sliders to the left and top of
the figure preview to adjust the size and placement.

MATLAB changes the figure size in the print preview, but does not change the size of the
actual figure.

 Print Figure from File Menu

8-3

8 Printing and Saving

8-4

To specify the printed figure size and placement programmatically, use the
PaperPosition property for the figure.

Line Width and Font Size
To change the line width, font size, and font name for the printed output, click File >
Print Preview > Lines/Text tab. Specify a custom line width in the appropriate text box,
for example, 2 points. Select a font name from the dropdown list of fonts and specify a
custom font size. For example, use 20 point Garamond font.

MATLAB changes the line width and font in the print preview, but does not change the
appearance of the actual figure.

 Print Figure from File Menu

8-5

To change the line width and font size programmatically, set properties of the graphics
objects. For a list, see “Graphics Object Properties”.

See Also
print | saveas

Related Examples
• “Copy Figure to Clipboard from Edit Menu” on page 8-7
• “Customize Graph Using Plot Tools” on page 1-7

8 Printing and Saving

8-6

Copy Figure to Clipboard from Edit Menu
This example shows how to copy a figure to the clipboard and how to set copy options.
When a figure is on the clipboard, you can paste it into other applications, such as a
document or presentation.

Copy Figure to Clipboard
Create a bar chart with a title. Copy the figure to your system clipboard by clicking Edit
> Copy Figure.

x = [3 5 2 6 1 8 2 3];
bar(x)
title('Bar Chart')

 Copy Figure to Clipboard from Edit Menu

8-7

Paste the copied figure into other applications, typically by right-clicking. By default,
MATLAB converts the background color of the copied figure to white.

Note The Copy Figure option is not available on Linux® systems. Use the programmatic
alternative.

8 Printing and Saving

8-8

To copy the figure programmatically, use the '-clipboard' option with print. Specify
the format as either '-dbitmap', '-dpdf', or '-dmeta'. The metafile format, '-
dmeta', is supported on Windows systems only.

Specify Format, Background Color, and Size Options
You can adjust certain settings for figures that are copied to the clipboard. Access these
options by selectingEdit > Copy Options from the figure menu. The settings apply to all
future figures copied to the clipboard. They do not affect the way the figure looks on the
screen.

Note This window is available on Windows systems only. On Mac and Linux systems, use
the programmatic alternatives.

 Copy Figure to Clipboard from Edit Menu

8-9

Set the clipboard format to one of these options:

• Metafile — Copy the figure in an EMF color vector format.
• Preserve information — Select the format based on the figure’s renderer. If the

renderer is Painters, then the format is a metafile. If the renderer is OpenGL®, then
the format is a bitmap image.

• Bitmap — Copy the figure in a bitmap format.

Set the figure background color to one of these options:

• Use figure color — Keep the background color the same as it appears on the screen. To
use the programmatic alternative, set the InvertHardcopy property for the figure to
'off' before copying.

• Force white background — Copy the figure with a white background. To use the
programmatic alternative, set the InvertHardcopy property for the figure to 'on'
before copying.

• Transparent background — Copy the figure with a transparent background. To use the
programmatic alternative, set the Color property for the figure to 'none' and the
InvertHardcopy property to 'off' before copying. Metafile and PDF formats
support transparency. Bitmap formats do not support transparency.

Copy the figure with the same size as it appears on the screen by selecting Match figure
screen size. Clear this option to use the width and height specified in the Export Setup
dialog box.

See Also
print | saveas

Related Examples
• “Save Figure to Open in Another Application” on page 8-19
• “Customize Graph Using Plot Tools” on page 1-7

8 Printing and Saving

8-10

Customize Figure Interactively Before Saving
This example shows how to use the Export Setup window to customize a figure before
saving it. It shows how to change the figure size, background color, font size, and line
width. It also shows how to save the settings as an export style that you can apply to
other figures before saving them.

Set Figure Size
Create a line plot.

x = linspace(0,10);
y = sin(x);
plot(x,y)

Set the figure size by clicking File > Export Setup. Specify the desired dimensions in the
Width and Height fields, for example 5-by-4 inches. The dimensions include the entire
figure window except for the frame, title bar, menu bar, and any tool bars. If the specified
width and height are too large, then the figure might not reach the specified size.

To make the axes fill the figure, select Expand axes to fill figure. This option only affects
axes with an ActivePositionProperty property set to 'outerposition'. By default,
it does not affect subplots since subplots have an ActivePositionProperty set to
'position'.

 Customize Figure Interactively Before Saving

8-11

Click Apply to Figure. Applying the settings changes the appearance of the figure on the
screen. All settings from the Export Setup dialog are applied to the figure. Thus, more
than just the figure size can change. For example, by default, MATLAB converts the
background color of the saved figure to white.

8 Printing and Saving

8-12

Set Figure Background Color
Set the figure background color by clicking the Rendering property in the Export Setup
window. In the Custom color field, specify either a color name from the table or an RGB
triplet. For example, set the background color to yellow.

 Customize Figure Interactively Before Saving

8-13

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1],
for example, [0.4 0.6 0.7]. This table lists some common RGB triplets that have
corresponding color names. To specify the default gray background color, set the Custom
color field to default.

Long Name Short Name Corresponding RGB
Triplet

white w [1 1 1]
yellow y [1 1 0]
magenta m [1 0 1]
red r [1 0 0]
cyan c [0 1 1]
green g [0 1 0]
blue b [0 0 1]
black k [0 0 0]

Set Figure Font Size and Line Width
Change the font by clicking the Fonts property. Specify a fixed font size and select a font
name, font weight, and font angle. For example, use 20 point bold font. The tick mark
locations might change to accommodate the new font size.

8 Printing and Saving

8-14

Change the line width by clicking the Lines property. Specify a fixed line width, for
example, 2 points.

Click Apply to Figure on the right side of the Export Setup dialog.

 Customize Figure Interactively Before Saving

8-15

Save Figure to File
Save the figure to a file by first clicking Export, and then specifying a file name, location,
and desired format. For more information about file formats, see saveas.

8 Printing and Saving

8-16

Save Figure Settings for Future Use
Save your settings to use for future figures by creating an export style. In the Export
Styles section, type a style name, for example MyCustomSettings. Then, click Save.

Apply Settings to Another Figure
Apply your settings to another figure by opening the Export Setup box from its figure
menu. In the Export Styles section, select the style name and click Load. Next, click
Apply to Figure on the right side of the Export Setup dialog. MATLAB applies the saved
style settings to the figure.

 Customize Figure Interactively Before Saving

8-17

Restore Figure to Original Settings
Restore the figure on the screen to the original settings by clicking Restore Figure.

See Also
print | saveas

Related Examples
• “Save Figure to Open in Another Application” on page 8-19
• “Save Figure at Specific Size and Resolution” on page 8-27
• “Customize Graph Using Plot Tools” on page 1-7

8 Printing and Saving

8-18

Save Figure to Open in Another Application
In this section...
“Choose File Format” on page 8-19
“Save Figure for Document or Presentation” on page 8-19
“Save Figure for Editing in Another Application” on page 8-20
“Customize Figure Before Saving” on page 8-20
“Include Figure in Microsoft Application or LaTeX Document” on page 8-21
“File Format Options” on page 8-21

Choose File Format
Before saving the figure, consider the file format you want to use. You can save the figure
as either a bitmap image or a vector graphics file.

• Bitmap images contain a pixel-based representation of the figure. This type of format
is widely used by web browsers and other applications that display graphics. However,
bitmap images do not scale well. You cannot modify individual graphics objects, such
as lines and text, in other graphics applications. Supported bitmap image formats
include PNG and JPEG.

• Vector graphics files store commands that redraw the figure. This type of format
scales well, but can result in a large file. Also, vector graphics files might not produce
the correct 3-D arrangement of objects in certain cases. Some applications support
extensive editing of vector graphics formats, but some applications support only
resizing the graphic. In general, try to make all the necessary changes while your
figure is still in MATLAB. Supported vector graphics formats include PDF, EPS, and
SVG.

For a full list of supported file formats, see “File Format Options” on page 8-21.

Save Figure for Document or Presentation
To save a figure, use either the saveas or print function. For example, save a bar chart
as a PNG file. Use gcf to save the current figure.

bar([1 10 7 8 2 2 9 3 6])
saveas(gcf,'BarChartFile.png')

 Save Figure to Open in Another Application

8-19

If you want additional control over the saved output, such as setting the resolution or
controlling the renderer, use the print function to save the figure instead.

Note Details of saved and printed figures can differ from the figure on the display. To get
output that is more consistent with the display, see “Save Figure Preserving Background
Color” on page 8-24 and “Save Figure at Specific Size and Resolution” on page 8-27.

Save Figure for Editing in Another Application
If you want to edit a figure in another application, save it as a vector graphics file, such as
PDF or EPS. Use either the saveas or print function to save the figure.

For example, save a bar chart as an EPS file with color using the 'epsc' file format.

bar([1 10 7 8 2 2 9 3 6])
saveas(gcf,'BarChartFile','epsc')

saveas saves the bar chart as BarChartFile.eps. For a black and white EPS file, use
the 'eps' format instead. For a full list of supported file formats, see “File Format
Options” on page 8-21.

Customize Figure Before Saving
Customizing your figure in MATLAB before you save it can eliminate the need to use
another application for editing.

To customize the figure programmatically, set properties of the graphics objects.
Typically, graphics functions return output arguments that you can use to access and
modify graphics objects. For example, assign the chart line objects returned from the
plot function to a variable and set their LineWidth property.

p = plot(rand(5));
set(p,'LineWidth',3)

If you do not return the graphics objects as output arguments, you can use findobj to
find objects with certain properties. For example, find all objects in the current figure
with a Type property set to 'line'. Then, set their LineWidth property.

plot(rand(5))
p = findobj(gcf,'Type','line')
set(p,'LineWidth',3);

8 Printing and Saving

8-20

For a list of all graphics objects and their properties, see “Graphics Object Properties”.

To customize the figure interactively, use either the Plot Tools or the Export Setup dialog.
For more information on the Plot Tools, see “Customize Graph Using Plot Tools” on page
1-7. For more information on the Export Setup dialog, see “Customize Figure Interactively
Before Saving” on page 8-11.

Include Figure in Microsoft Application or LaTeX Document
To import a figure into a Microsoft application, such as Word or PowerPoint®, click Insert
> Picture > From File in the application. Then, navigate to your saved file.

To add a figure to a LaTeX document, first save the figure using an EPS format. For
example, saveas(gcf,'BarChart','epsc'). Then, use the \includegraphics
element in the LaTeX document to include the file. For example:

\documentclass{article}
\usepackage{graphicx}
\begin{document}

\begin{figure}[h]
\centerline{\includegraphics[height=10cm]{BarChart.eps}}
\caption{Bar Chart from MATLAB}
\end{figure}

\end{document}

File Format Options
This table lists the supported bitmap image formats.

Option Bitmap Image Format Corresponding File
Extension

'jpeg' JPEG 24-bit .jpg
'png' PNG 24-bit .png
'tiff' TIFF 24-bit (compressed) .tif
'tiffn' TIFF 24-bit (not

compressed)
.tif

 Save Figure to Open in Another Application

8-21

Option Bitmap Image Format Corresponding File
Extension

'meta' Enhanced metafile
(Windows only)

.emf

'bmpmono' BMP Monochrome .bmp
'bmp' BMP 24-bit .bmp
'bmp16m' BMP 24-bit .bmp
'bmp256' BMP 8-bit (256 color, uses a

fixed colormap)
.bmp

'hdf' HDF 24-bit .hdf
'pbm' PBM (plain format) 1-bit .pbm
'pbmraw' PBM (raw format) 1-bit .pbm
'pcxmono' PCX 1-bit .pcx
'pcx24b' PCX 24-bit color (three 8-bit

planes)
.pcx

'pcx256' PCX 8-bit newer color (256
color)

.pcx

'pcx16' PCX older color (EGA/VGA
16-color)

.pcx

'pgm' PGM (plain format) .pgm
'pgmraw' PGM (raw format) .pgm
'ppm' PPM (plain format) .ppm
'ppmraw' PPM (raw format) .ppm

This table lists the supported vector graphics formats.

Option Vector Graphics Format Corresponding File
Extension

'pdf' Full page Portable
Document Format (PDF)
color

.pdf

8 Printing and Saving

8-22

Option Vector Graphics Format Corresponding File
Extension

'eps' Encapsulated PostScript®
(EPS) Level 3 black and
white

.eps

'epsc' Encapsulated PostScript
(EPS) Level 3 color

.eps

'eps2' Encapsulated PostScript
(EPS) Level 2 black and
white

.eps

'epsc2' Encapsulated PostScript
(EPS) Level 2 color

.eps

'meta' Enhanced Metafile
(Windows only)

.emf

'svg' SVG (Scalable Vector
Graphics)

.svg

'ps' Full-page PostScript (PS)
Level 3 black and white

.ps

'psc' Full-page PostScript (PS)
Level 3 color

.ps

'ps2' Full-page PostScript (PS)
Level 2 black and white

.ps

'psc2' Full-page PostScript (PS)
Level 2 color

.ps

See Also
print | saveas

Related Examples
• “Save Figure at Specific Size and Resolution” on page 8-27
• “Save Figure to Reopen in MATLAB Later” on page 8-33

 See Also

8-23

Save Figure Preserving Background Color
In this section...
“Retain Current Background Color” on page 8-24
“Change Background Color” on page 8-25

Retain Current Background Color
By default, saved figures have a white background. Ensure that the colors of the saved
figure match the colors on the display by setting the InvertHardcopy property of the
figure to 'off'. Starting in R2014b, you can use dot notation to set properties. If you are
using an earlier release, use the set function instead.

For example, create a bar chart and save it as a PNG file. Retain the figure background
color in the saved output.

bar([1 10 7 8 2 2 9 3 6])
fig = gcf;
fig.InvertHardcopy = 'off';
saveas(gcf,'GrayBackground.png')

saveas saves the file, GrayBackground.png, in your current folder. The saved figure
has the same gray background color as the onscreen figure.

8 Printing and Saving

8-24

Change Background Color
To change the figure color, set the Color property for the figure. For example, change the
color to yellow before saving the figure.

bar([1 10 7 8 2 2 9 3 6])
fig = gcf;
fig.Color = 'yellow';
fig.InvertHardcopy = 'off';
saveas(gcf,'YellowBackground.png')

saveas saves the file, YellowBackground.png, in your current folder. The saved figure
has the same yellow background color as the onscreen figure.

 Save Figure Preserving Background Color

8-25

See Also
print | saveas

Related Examples
• “Save Figure at Specific Size and Resolution” on page 8-27
• “Save Axes Without Saving UIControls” on page 8-36

8 Printing and Saving

8-26

Save Figure at Specific Size and Resolution
In this section...
“Use Screen Size and Resolution” on page 8-27
“Expand Figure to Fill Page” on page 8-28
“Use Specific Dimensions” on page 8-29
“Preserve Axis Limits and Tick Values” on page 8-31

Use Screen Size and Resolution
To print or save figures that are the same size as the figure on the screen, ensure that the
PaperPositionMode property of the figure is set to 'auto' before printing. To generate
output that matches the on-screen size in pixels, include the '-r0' resolution option
when using the print function.

Note Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead, for example,
set(fig,'PaperPositionMode','auto').

bar([1 10 7 8 2 2 9 3 6])
fig = gcf;
fig.PaperPositionMode = 'auto';
print('ScreenSizeFigure','-dpng','-r0')

 Save Figure at Specific Size and Resolution

8-27

Expand Figure to Fill Page
To print or save a figure that fills the page, use print with either the '-fillpage' or
'-bestfit' option. Both options are valid only when printing a figure to a printer or
saving it to a paged format (PDF and full page PostScript).

• The '-fillpage' option maximizes the size of the figure to fill the page and leaves
a .25 inch page margin. The tick marks, layout, and aspect ratio of the figure might
change.

8 Printing and Saving

8-28

• The '-bestfit' option maximizes the size of the figure to fill the page, but preserves
the aspect ratio of the figure. The figure might not fill the entire page. This option
leaves a minimum page margin of .25 inches.

This table shows an example of each option and the resulting output size.

Fill Page Option Best Fit Option
bar([1 10 7 8 2 2 9 3 6])
print('-fillpage','FillPageFigure','-dpdf')

bar([1 10 7 8 2 2 9 3 6])
print('-bestfit','BestFitFigure','-dpdf')

Use Specific Dimensions
To save or print a figure with specific dimensions, set the PaperPosition property of
the figure to the desired dimensions. The PaperPosition property affects the size of

 Save Figure at Specific Size and Resolution

8-29

saved and printed figures, but does not affect the size of the figure on the display. Set the
property to a four-element vector of the form [left bottom width height].

• left and bottom values — Control the distance from the lower left corner of the page
to the lower left corner of the figure. These values are ignored when saving a figure to
a nonpage format, such as a PNG or EPS format.

• width and height values — Control the figure dimensions. The dimensions include
the entire figure window except for the frame, title bar, menu bar, and any tool bars. If
the width and height values are too large, then the figure might not reach the
specified size. If the figure does not reach the specific size, then any UI components on
the figure, such as uicontrols or a uitable, might not save or print as expected.

For example, save the figure with 6-by-3 inch dimensions using screen resolution.

Note Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead, for example,
set(fig,'PaperUnits','inches').

bar([1 10 7 8 2 2 9 3 6])
fig = gcf;
fig.PaperUnits = 'inches';
fig.PaperPosition = [0 0 6 3];
print('5by3DimensionsFigure','-dpng','-r0')

8 Printing and Saving

8-30

Preserve Axis Limits and Tick Values
If the size of the saved or printed figure is different from the size on screen, the axis limits
and tick values can change to accommodate the new size. To keep the axis limits and tick
values from changing, set the tick value mode and limit mode properties for the axes to
'manual'.

Note Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead, for example,
set(ax,'XTickMode','manual').

bar([1 10 7 8 2 2 9 3 6])
ax = gca;
ax.XTickMode = 'manual';
ax.YTickMode = 'manual';
ax.ZTickMode = 'manual';
ax.XLimMode = 'manual';
ax.YLimMode = 'manual';
ax.ZLimMode = 'manual';

 Save Figure at Specific Size and Resolution

8-31

fig = gcf;
fig.PaperUnits = 'inches';
fig.PaperPosition = [0 0 6 3];
print('SameAxisLimits','-dpng','-r0')

See Also
print | saveas

Related Examples
• “Save Figure Preserving Background Color” on page 8-24
• “Save Figure to Open in Another Application” on page 8-19

8 Printing and Saving

8-32

Save Figure to Reopen in MATLAB Later
This example shows how to save a figure so that you can reopen it in MATLAB later. You
can either save the figure to a FIG-file or you can generate and save the code.

Save Figure to FIG-File
Create a plot to save. Add a title and axis labels.

x = linspace(0,10);
y = sin(x);
plot(x,y)
title('Sine Wave')
xlabel('x ranges from 0 to 10')
ylabel('y = sin(x)')

 Save Figure to Reopen in MATLAB Later

8-33

Save the figure to a FIG-file using the savefig function. The FIG-file stores the
information required to recreate the figure.

savefig('SineWave.fig')

Close the figure, then reopen the saved figure using the openfig function.

close(gcf)
openfig('SineWave.fig')

openfig creates a new figure, a new axes, and a new line object using the same data as
the original objects. Most of the property values of the new objects are the same as the

8 Printing and Saving

8-34

original objects. However, any current default values apply to the new figure. You can
interact with the figure. For example, you can pan, zoom, and rotate the axes.

Note FIG-files open in MATLAB only. If you want to save the figure in a format that can
be opened in another application, see “Save Figure to Open in Another Application” on
page 8-19.

Generate Code to Recreate Figure
Alternatively, generate the MATLAB code for the plot and then use the code to reproduce
the graph. Generating the code captures modifications that you make using the plot tools.

Click File > Generate Code.... The generated code displays in the MATLAB Editor. Save
the code by clicking File > Save As.

Generated files do not store the data necessary to recreate the graph, so you must supply
the data arguments. The data arguments do not need to be identical to the original data.
Comments at the beginning of the file state the type of data expected.

See Also
openfig | saveas | savefig

Related Examples
• “Save Figure to Open in Another Application” on page 8-19
• “Customize Graph Using Plot Tools” on page 1-7

 See Also

8-35

Save Axes Without Saving UIControls
To save only the axes from a figure that has uicontrols, you can use print with the '-
noui' option. Alternatively, you can copy the axes to a new figure and save the new
figure.

Create Figure with UIControls
To create an example of a figure with uicontrols, set your current folder to one to which
you have write access. Then, copy this example code.

copyfile(fullfile(docroot,'techdoc','creating_guis','examples','simple_gui2*.*'));
simple_gui2

8 Printing and Saving

8-36

Save Axes Without Saving UIControls
To save the figure and exclude the uicontrols from the saved output, use print with the
'-noui' option. print leaves blank space in place of the uicontrols. If you do not specify
the '-noui' option, then print includes the uicontrols in the saved output.

To maintain the current figure background color in the saved figure, set the
InvertHardcopy property of the figure to 'off'. Otherwise, the saved figure has a
white background. Starting in R2014b, you can use dot notation to set properties. If you
are using an earlier release, use the set function instead.

fig = gcf;
fig.InvertHardcopy = 'off';
print('PlotWithoutUIControls','-dpng','-noui')

 Save Axes Without Saving UIControls

8-37

Copy Axes to New Figure and Save
To eliminate the blank space, copy the axes to a new figure and resize the axes to fill the
figure. For example, click the axes to make it the current axes. Use copyobj to copy it to
a new figure. Then, set the Position property of the new axes to fill the figure.

ax_old = gca;
f_new = figure;
ax_new = copyobj(ax_old,f_new)
set(ax_new,'Position','default')

8 Printing and Saving

8-38

Save the new figure using either saveas or print.

print(f_new,'AxesOnly','-dpng')

See Also
print | saveas

Related Examples
• “Save Figure to Open in Another Application” on page 8-19
• “Save Figure at Specific Size and Resolution” on page 8-27

 See Also

8-39

Save Figure with Minimal White Space
This example shows how to save a figure so that the saved figure has a tight margin of
white space around the axes.

Create Plot to Save
Create a plot to save and add a title.

plot(peaks)
title('Plot of Peaks Function')

8 Printing and Saving

8-40

Expand Axes to Fill Figure
Expand the axes size so that it fills the maximum available space in the figure. Get the
dimensions of the maximum available space from the OuterPosition property of the
axes. Account for the space needed for the tick values and text labels using the margin
values stored in the TightInset property.

Note Starting in R2014b, you can use dot notation to query and set properties. If you are
using an earlier release, use the get and set functions instead.

ax = gca;
outerpos = ax.OuterPosition;
ti = ax.TightInset;
left = outerpos(1) + ti(1);
bottom = outerpos(2) + ti(2);
ax_width = outerpos(3) - ti(1) - ti(3);
ax_height = outerpos(4) - ti(2) - ti(4);
ax.Position = [left bottom ax_width ax_height];

 Save Figure with Minimal White Space

8-41

Note If you have multiple subplot axes in your figure, then expand the size of each
subplot. The space allocated for subplots does not typically extend to the figure edges.

Alternatively, you can interactively expand the size of the axes to fill the figure using the
File > Export Setup dialog. In the Properties section, select Size, and then select
Expand axes to fill figure. This option only affects axes with an
ActivePositionProperty property set to 'outerposition'. By default, it does not
affect subplots since subplots have an ActivePositionProperty set to 'position'.

8 Printing and Saving

8-42

Specify Figure Size and Page Size
Set the page size equal to the figure size to ensure that there is no extra whitespace. This
step is necessary only if you are saving to a PDF or PostScript file format. If you are
saving to an image file format, this step is not necessary. Image formats automatically use
a page size that fits tightly around the saved figure.

fig = gcf;
fig.PaperPositionMode = 'auto'
fig_pos = fig.PaperPosition;
fig.PaperSize = [fig_pos(3) fig_pos(4)];

Save Figure to File Format
Save the figure to a file.

print(fig,'MySavedFile','-dpdf')

See Also
print | saveas

Related Examples
• “Save Figure to Open in Another Application” on page 8-19
• “Save Figure at Specific Size and Resolution” on page 8-27
• “Customize Figure Interactively Before Saving” on page 8-11

 See Also

8-43

Axes Active Position

9

Control Axes Layout
In this section...
“Axes Position-Related Properties” on page 9-2
“Position and Margin Boundaries” on page 9-2
“Controlling Automatic Resize Behavior” on page 9-4
“Stretch-to-Fill Behavior” on page 9-5

Axes Position-Related Properties
The Axes object has several properties that control the axes size and the layout of titles
and axis labels within a figure.

• OuterPosition — Outer boundary of the axes, including the title, labels, and a
margin. Specify this property as a vector of the form [left bottom width
height]. The left and bottom values indicate the distance from the lower left
corner of the figure to the lower left corner of the outer boundary. The width and
height values indicate the outer boundary dimensions.

• Position — Boundary of the inner axes where plots appear, excluding the title,
labels, and a margin. Specify this property as a vector of the form [left bottom
width height].

• TightInset — Margins added to the width and height of the Position property
values, specified as a vector of the form [left bottom right top]. This property
is read-only. When you add axis labels and a title, MATLAB updates the values to
accommodate the text. The size of the boundary defined by the Position and
TightInset properties includes all graph text.

• ActivePositionProperty — Position property preserved when the Axes object
changes size, specified as either 'outerposition' (the default) or 'position'.

• Units — Position units. The units must be set to 'normalized' (the default) to
enable automatic axes resizing. When the position units are a unit of length, such as
inches or centimeters, then the Axes object is a fixed size.

Position and Margin Boundaries
This figure shows a 2-D view of the axes areas defined by the OuterPosition values
(red), the Position values (blue), and the Position expanded by
the TightInset values (magenta).

9 Axes Active Position

9-2

This figure shows a 3-D view of the axes areas defined by the OuterPosition values
(red), the Position values (blue), and the Position expanded by
the TightInset values (magenta).

 Control Axes Layout

9-3

Controlling Automatic Resize Behavior
Some scenerios can trigger the Axes object to automatically resize. For example,
interactively resizing the figure or adding a title or axis labels activates automatic
resizing. Sometimes, the new axes size cannot satisfy both the Position and
OuterPosition values, so the ActivePositionProperty indicates which values to
preserve. Specify the ActivePositionProperty as one of these values:

• 'outerposition' — Preserve the OuterPosition value. Use this option when you
do not want the axes or any of the surrounding text to extend beyond a certain outer
boundary. MATLAB adjusts the size of the inner area of the axes (where plots appear)
to try to fit the contents within the outer boundary.

• 'position' — Preserve the Position value. Use this option when you want the
inner area of the axes to remain a certain size within the figure. This option sometimes
causes text to run off the figure.

Usually, leaving the ActivePositionProperty value set to 'outerposition' is
preferable. However, an overly long axes title or labels can shrink the inner area of your
axes to a size that is hard to read. In such a case, keeping the inner axes to a specific size
can be preferable, even if the surrounding text runs off the figure.

For example, create a figure with two axes and specify the same width and height for
each axes position. Set the ActivePositionProperty value to 'outerposition' for
the upper axes and to 'position' for the lower axes. Notice that in the upper axes, the
inner area shrinks to accommodate the text, but the text does not run outside the figure.
In the lower axes, the size of the inner area is preserved, but some of the text is cut off.

figure;
ax1 = axes('Position',[0.13 0.58 0.77 0.34]);
ax1.ActivePositionProperty = 'outerposition';
plot(ax1,1:10)
title(ax1,'Preserve OuterPosition')
yticklabels(ax1,{'My incredibly descriptive, excessively wordy, and overly long label',...
 'label 2','label 3'})

ax2 = axes('Position',[0.13 0.11 0.77 0.34]);
ax2.ActivePositionProperty = 'position';
plot(ax2,1:10)
title(ax2,'Preserve Position')
yticklabels(ax2,{'My incredibly descriptive, excessively wordy, and overly long label',...
 'label 2','label 3'})

9 Axes Active Position

9-4

Stretch-to-Fill Behavior
By default, MATLAB stretches the axes to fill the available space. This “stretch-to-fill”
behavior can cause some distortion. The axes might not exactly match the data aspect
ratio, plot box aspect ratio, and camera-view angle values stored in the
DataAspectRatio, PlotBoxAspectRatio, and CameraViewAngle properties. The
“stretch-to-fill” behavior is enabled when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode properties of the Axes object
are set to 'auto'.

If you specify the data aspect ratio, plot box aspect ratio, or camera-view angle, then the
“stretch-to-fill” behavior is disabled. When the “stretch-to-fill” behavior is disabled,
MATLAB makes the axes as large as possible within the available space and strictly
adheres to the property values so that there is no distortion.

For example, this figure shows the same plot with and without the “stretch-to-fill”
behavior enabled. The dotted line shows the available space as defined by the Position
property. In both versions, the data aspect ratio, plot box aspect ratio, and camera-view
angle values are the same. However, in the left plot, the stretching introduces some
distortion.

 Control Axes Layout

9-5

Stretch-to-fill enabled (some
distortion)

Stretch-to-fill disabled (no distortion)

See Also
Functions
axes | daspect | pbaspect | subplot | title

Properties
Axes

Related Examples
• “Save Figure with Minimal White Space” on page 8-40

9 Axes Active Position

9-6

Controlling Graphics Output

• “Control Graph Display” on page 10-2
• “Prepare Figures and Axes for Graphs” on page 10-5
• “Use newplot to Control Plotting” on page 10-9
• “Responding to Hold State” on page 10-12
• “Prevent Access to Figures and Axes” on page 10-14

10

Control Graph Display
In this section...
“What You Can Control” on page 10-2
“Targeting Specific Figures and Axes” on page 10-2

What You Can Control
MATLAB allows many figure windows to be open simultaneously during a session. You can
control which figures and which axes MATLAB uses to display the result of plotting
functions. You can also control to what extent MATLAB clears and resets the properties of
the targeted figures and axes.

You can modify the way MATLAB plotting functions behave and you can implement
specific behaviors in plotting functions that you write.

Consider these aspects:

• Can you prevent a specific figure or axes from becoming the target for displaying
graphs?

• What happens to an existing graph when you plot more data to that graph? Is the
existing graph replaced or are new graphics objects added to the existing graph?

Targeting Specific Figures and Axes
By default, MATLAB plotting functions display graphs in the current figure and current
axes (the objects returned by gcf and gca respectively). You can direct the output to
another figure and axes by:

• Explicitly specifying the target axes with the plotting function.
• Making the target axes the current axes.

Specify the Target Axes

Suppose you create a figure with four axes and save the handles in the array ax:

for k = 1:4
 ax(k) = subplot(2,2,k);
end

10 Controlling Graphics Output

10-2

Call plot with the axes handle as the first argument:

plot(ax(1),1:10)

For plotting functions that do not support the axes first argument, set the Parent
property:

t = 0:pi/5:2*pi;
patch(sin(t),cos(t),'y','Parent',ax(2))

Make the Target Current

To specify a target, you can make a figure the current figure and an axes in that figure the
current axes. Plotting functions use the current figure and its current axes by default. If
the current figure has no current axes, MATLAB creates one.

If fig is the handle to a figure, then the statement

figure(fig)

• Makes fig the current figure.
• Restacks fig to be the frontmost figure displayed.
• Makes fig visible if it was not (sets the Visible property to on).
• Updates the figure display and processes any pending callbacks.

The same behavior applies to axes. If ax is the handle to an axes, then the statement

axes(ax)

• Makes ax the current axes.
• Restacks ax to be the frontmost axes displayed.
• Makes ax visible if it was not.
• Updates the figure containing the axes and process any pending callbacks.

Make Figure or Axes Current Without Changing Other State

You can make a figure or axes current without causing a change in other aspects of the
object state. Set the root CurrentFigure property or the figure object's CurrentAxes
property to the handle of the figure or axes that you want to target.

If fig is the handle to an existing figure, the statement

 Control Graph Display

10-3

r = groot;
r.CurrentFigure = fig;

makes fig the current figure. Similarly, if ax is the handle of an axes object, the
statement

fig.CurrentAxes = ax;

makes it the current axes, if fig is the handle of the axes’ parent figure.

10 Controlling Graphics Output

10-4

Prepare Figures and Axes for Graphs

In this section...
“Behavior of MATLAB Plotting Functions” on page 10-5
“How the NextPlot Properties Control Behavior” on page 10-5
“Control Behavior of User-Written Plotting Functions” on page 10-7

Behavior of MATLAB Plotting Functions
MATLAB plotting functions either create a new figure and axes if none exist, or reuse an
existing figure and axes. When reusing existing axes, MATLAB

• Clears the graphics objects from the axes.
• Resets most axes properties to their default values.
• Calculates new axes limits based on the new data.

When a plotting function creates a graph, the function can:

• Create a figure and an axes for the graph and set necessary properties for the
particular graph (default behavior if no current figure exists)

• Reuse an existing figure and axes, clearing and resetting axes properties as required
(default behavior if a graph exists)

• Add new data objects to an existing graph without resetting properties (if hold is on)

The NextPlot figure and axes properties control the way that MATLAB plotting functions
behave.

How the NextPlot Properties Control Behavior
MATLAB plotting functions rely on the values of the figure and axes NextPlot properties
to determine whether to add, clear, or clear and reset the figure and axes before drawing
the new graph. Low-level object-creation functions do not check the NextPlot
properties. They simply add the new graphics objects to the current figure and axes.

This table summarizes the possible values for the NextPlot properties.

 Prepare Figures and Axes for Graphs

10-5

NextPlot Figure Axes
new Creates a new figure and

uses it as the current figure.
Not an option for axes.

add Adds new graphics objects
without clearing or resetting
the current figure. (Default)

Adds new graphics objects
without clearing or resetting
the current axes.

replacechildren Removes all axes objects
whose handles are not
hidden before adding new
objects. Does not reset
figure properties. Equivalent
to clf.

Removes all axes child
objects whose handles are
not hidden before adding
new graphics objects. Does
not reset axes properties.
Equivalent to cla.

replace Removes all axes objects
and resets figure properties
to their defaults before
adding new objects.
Equivalent to clf reset.

Removes all child objects
and resets axes properties
to their defaults before
adding new objects.
Equivalent to cla reset.
(Default)

Plotting functions call the newplot function to obtain the handle to the appropriate axes.

The Default Scenario

Consider the default situation where the figure NextPlot property is add and the axes
NextPlot property is replace. When you call newplot, it:

1 Checks the value of the current figure's NextPlot property (which is, add).
2 Determines that MATLAB can draw into the current figure without modifying the

figure. If there is no current figure, newplot creates one, but does not recheck its
NextPlot property.

3 Checks the value of the current axes' NextPlot property (which is, replace),
deletes all graphics objects from the axes, resets all axes properties (except
Position and Units) to their defaults, and returns the handle of the current axes. If
there is no current axes, newplot creates one, but does not recheck its NextPlot
property.

4 Deletes all graphics objects from the axes, resets all axes properties (except
Position and Units) to their defaults, and returns the handle of the current axes. If
there is no current axes, newplot creates one, but does not recheck its NextPlot
property.

10 Controlling Graphics Output

10-6

hold Function and NextPlot Properties

The hold function provides convenient access to the NextPlot properties. When you
want add objects to a graph without removing other objects or resetting properties use
hold on:

• hold on — Sets the figure and axes NextPlot properties to add. Line graphs
continue to cycle through the ColorOrder and LineStyleOrder property values.

• hold off — Sets the axes NextPlot property to replace

Use the ishold to determine if hold is on or off.

Control Behavior of User-Written Plotting Functions
MATLAB provides the newplot function to simplify writing plotting functions that
conform to the settings of the NextPlot properties.

newplot checks the values of the NextPlot properties and takes the appropriate action
based on these values. Place newplot at the beginning of any function that calls object
creation functions.

When your function calls newplot, newplot first queries the figure NextPlot property.
Based on the property values newplot then takes the action described in the following
table based on the property value.

Figure NextPlot Property
Value

newplot Function

No figures exist Creates a figure and makes this figure the current figure.
add Makes the figure the current figure.
new Creates a new figure and makes it the current figure.
replacechildren Deletes the figure's children (axes objects and their

descendants) and makes this figure the current figure.
replace Deletes the figure's children, resets the figure's properties

to their defaults, and makes this figure the current figure.

Then newplot checks the current axes' NextPlot property. Based on the property value
newplot takes the action described in the following table.

 Prepare Figures and Axes for Graphs

10-7

Axes NextPlot Property
Value

newplot Function

No axes in current figure Creates an axes and makes it the current axes
add Makes the axes the current axes and returns its handle.
replacechildren Deletes the axes' children and makes this axes the current

axes.
replace Deletes the axes' children, reset the axes' properties to

their defaults, and makes this axes the current axes.

10 Controlling Graphics Output

10-8

Use newplot to Control Plotting
This example shows how to prepare figures and axes for user-written plotting functions.

Use newplot to manage the output from specialized plotting functions. The myPlot2D
function:

• Customizes the axes and figure appearance for a particular publication requirement.
• Uses revolving line styles and a single color for multiline graphs.
• Adds a legend with specified display names.

Note Starting in R2014b, you can set properties using dot notation. If you are using an
earlier release, use the set function instead, such as set(cax,'FontName','Times').

function myPlot2D(x,y)
 % Call newplot to get the axes handle
 cax = newplot;
 % Customize axes
 cax.FontName = 'Times';
 cax.FontAngle = 'italic';
 % Customize figure
 fig = cax.Parent;
 fig.MenuBar= 'none';
 % Call plotting commands to
 % produce custom graph
 hLines = line(x,y,...
 'Color',[.5,.5,.5],...
 'LineWidth',2);
 lso = ['- ';'--';': ';'-.'];
 setLineStyle(hLines)
 grid on
 legend('show','Location','SouthEast')
 function setLineStyle(hLines)
 style = 1;
 for ii = 1:length(hLines)
 if style > length(lso)
 style = 1;
 end
 hLines(ii).LineStyle = lso(style,:);
 hLines(ii).DisplayName = num2str(style);
 style = style + 1;

 Use newplot to Control Plotting

10-9

 end
 end
end

This graph shows typical output for the myPlot2D function:

x = 1:10;
y = peaks(10);
myPlot2D(x,y)

The myPlot2D function shows the basic structure of a user-written plotting functions:

• Call newplot to get the handle of the target axes and to apply the settings of the
NextPlot properties of the axes and figure.

10 Controlling Graphics Output

10-10

• Use the returned axes handle to customize the axes or figure for this specific plotting
function.

• Call plotting functions (for example, line and legend) to implement the specialized
graph.

Because myPlot2D uses the handle returned by newplot to access the target figure and
axes, this function:

• Adheres to the behavior of MATLAB plotting functions when clearing the axes with
each subsequent call.

• Works correctly when hold is set to on

The default settings for the NextPlot properties ensure that your plotting functions
adhere to the standard MATLAB behavior — reuse the figure window, but clear and reset
the axes with each new graph.

 Use newplot to Control Plotting

10-11

Responding to Hold State
This example shows how to test for hold state and respond appropriately in user-defined
plotting functions.

Plotting functions usually change various axes parameters to accommodate different data.
The myPlot3D function:

• Uses a 2-D or 3-D view depending on the input data.
• Respects the current hold state, to be consistent with the behavior of MATLAB

plotting functions.

function myPlot3D(x,y,z)
 % Call newplot to get the axes handle
 cax = newplot;
 % Save current hold state
 hold_state = ishold;
 % Call plotting commands to
 % produce custom graph
 if nargin == 2
 line(x,y);
 % Change view only if hold is off
 if ~hold_state
 view(cax,2)
 end
 elseif nargin == 3
 line(x,y,z);
 % Change view only if hold is off
 if ~hold_state
 view(cax,3)
 end
 end
 grid on
end

For example, the first call to myPlot3D creates a 3-D graph. The second call to myPlot3D
adds the 2-D data to the 3-D view because hold is on.

[x,y,z] = peaks(20);
myPlot3D(x,y,z)
hold on
myPlot3D(x,y)

10 Controlling Graphics Output

10-12

 Responding to Hold State

10-13

Prevent Access to Figures and Axes
In this section...
“Why Prevent Access” on page 10-14
“How to Prevent Access” on page 10-14

Why Prevent Access
In some situations it is important to prevent particular figures or axes from becoming the
target for graphics output. That is, prevent them from becoming the current figure, as
returned by gcf, or the current axes, as returned by gca.

You might want to prevent access to a figure containing the controls that implement a
user interface. Or, you might want to prevent access to an axes that is part of an
application program accessed only by the application.

How to Prevent Access
Prevent MATLAB functions from targeting a particular figure or axes by removing their
handles from the list of visible handles.

Two properties control handle visibility: HandleVisibility and ShowHiddenHandles

HandleVisibility is a property of all graphics objects. It controls the visibility of the
object’s handle to three possible values:

• on — You can obtain the object's handle with functions that return handles, such as
(gcf, gca, gco, get, and findobj). This is the default behavior.

• callback — The object's handle is visible only within the workspace of a callback
function.

• off — The handle is hidden from all functions executing in the command window and
in callback functions.

Properties Affected by Handle Visibility

When an object’s HandleVisibility is set to callback or off:

• The object's handle does not appear in its parent's Children property.

10 Controlling Graphics Output

10-14

• Figures do not appear in the root's CurrentFigure property.
• Axes do not appear in the containing figure's CurrentAxes property.
• Graphics objects do not appear in the figure's CurrentObject property.

Functions Affected by Handle Visibility

When a handle is not visible in its parent's list of children, functions that obtain handles
by searching the object hierarchy cannot return the handle. These functions include get,
findobj, gca, gcf, gco, newplot, cla, clf, and close.

Values Returned by gca and gcf

When a hidden-handle figure is topmost on the screen, but has visible-handle figures
stacked behind it, gcf returns the topmost visible-handle figure in the stack. The same
behavior is true for gca. If no visible-handle figures or axes exist, calling gcf or gca
creates one.

Access Hidden-Handle Objects

The root ShowHiddenHandles property enables and disables handle visibility control. By
default, ShowHiddenHandles is off, which means MATLAB follows the setting of every
object’s HandleVisibility property.

Setting ShowHiddenHandles to on is equivalent to setting the HandleVisibility
property of all objects in the graphics hierarchy to on.

Note Axes title and axis label text objects are not children of the axes. To access the
handles of these objects, use the axes Title, XLabel, YLabel, and ZLabel properties.

The close function also allows access to hidden-handle figures using the hidden option.
For example:

close('hidden')

closes the topmost figure on the screen, even if its handle is hidden.

Combining all and hidden options:

close('all','hidden')

closes all figures.

 Prevent Access to Figures and Axes

10-15

Handle Validity Versus Handle Visibility

All handles remain valid regardless of the state of their HandleVisibility property. If
you have assigned an object handle to a variable, you can always set and get its
properties using that handle variable.

10 Controlling Graphics Output

10-16

Default Values

• “Default Property Values” on page 11-2
• “Default Values for Automatically Calculated Properties” on page 11-6
• “How MATLAB Finds Default Values” on page 11-8
• “Factory-Defined Property Values” on page 11-9
• “Define Default Line Styles” on page 11-10
• “Multilevel Default Values” on page 11-12

11

Default Property Values
In this section...
“Predefined Values for Properties” on page 11-2
“Specify Default Values” on page 11-2
“Where in Hierarchy to Define Default” on page 11-3
“List Default Values” on page 11-3
“Set Properties to the Current Default” on page 11-4
“Remove Default Values” on page 11-4
“Set Properties to Factory-Defined Values” on page 11-4
“List Factory-Defined Property Values” on page 11-4
“Reserved Words” on page 11-5

Predefined Values for Properties
Nearly all graphics object properties have predefined values. Predefined values originate
from two possible sources:

• Default values defined on an ancestor of the object
• Factory values defined on the root of the graphics object hierarchy

Users can create default values for an object property, which take precedence over the
factory-defined values. Objects use default values when:

• Created in a hierarchy where an ancestor defines a default value
• Parented into a hierarchy where an ancestor defines a default value

Specify Default Values
Define a default property value using a character vector with these three parts:

'default' ObjectType PropertyName

• The word default
• The object type (for example, Line)

11 Default Values

11-2

• The property name (for example, LineWidth)

A character vector that specified the default line LineWidth would be:

'defaultLineLineWidth'

Use this character vector to specify the default value. For example, to specify a default
value of 2 points for the line LineWidth property, use the statement:

set(groot,'defaultLineLineWidth',2)

The character vector defaultLineLineWidth identifies the property as a line property.
To specify the figure color, use defaultFigureColor.

set(groot,'defaultFigureColor','b')

Where in Hierarchy to Define Default
In general, you should define a default value on the root level so that all subsequent
plotting function use those defaults. Specify the root in set and get statements using the
groot function, which returns the handle to the root.

You can define default property values on three levels:

• Root — values apply to objects created in current MATLAB session
• Figure — use for default values applied to children of the figure defining the defaults.
• Axes — use for default values applied only to children of the axes defining the defaults

and only when using low-level functions (light, line, ,patch, rectangle, surface,
text, and the low-level form of image).

For example, specify a default figure color only on the root level.

set(groot,'defaultFigureColor','b')

List Default Values
Use get to determine what default values are currently set on any given object level:

get(groot,'default')

returns all default values set in your current MATLAB session.

 Default Property Values

11-3

Set Properties to the Current Default
Specifying a property value of 'default' sets the property to the first encountered
default value defined for that property. For example, these statements result in a green
surface EdgeColor:

set(groot,'defaultSurfaceEdgeColor','k')
h = surface(peaks);
set(gcf,'defaultSurfaceEdgeColor','g')
set(h,'EdgeColor','default')

Because a default value for surface EdgeColor exists on the figure level, MATLAB
encounters this value first and uses it instead of the default EdgeColor defined on the
root.

Remove Default Values
Specifying a property value of 'remove' gets rid of user-defined default values. The
statement

set(groot,'defaultSurfaceEdgeColor','remove')

removes the definition of the default surface EdgeColor from the root.

Set Properties to Factory-Defined Values
Specifying a property value of 'factory' sets the property to its factory-defined value.
For example, these statements set the EdgeColor of surface h to black (its factory
setting), regardless of what default values you have defined:

set(gcf,'defaultSurfaceEdgeColor','g')
h = surface(peaks);
set(h,'EdgeColor','factory')

List Factory-Defined Property Values
You can list factory values:

• get(groot,'factory') — List all factory-defined property values for all graphics
objects

11 Default Values

11-4

• get(groot,'factoryObjectType') — List all factory-defined property values for a
specific object

• get(groot,'factoryObjectTypePropertyName') — List factory-defined value
for the specified property.

Reserved Words
Setting a property value to default, remove, or factory produces the effects described
in the previous sections. To set a property to one of these words (for example, a text
String property set to the word default), precede the word with the backslash
character:

h = text('String','\default');

 Default Property Values

11-5

Default Values for Automatically Calculated Properties
In this section...
“What Are Automatically Calculated Properties” on page 11-6
“Default Values for Automatically Calculated Properties” on page 11-6

What Are Automatically Calculated Properties
When you create a graph, MATLAB sets certain property values appropriately for the
particular graph. These properties, such as those controlling axis limits and the figure
renderer, have an associated mode property.

The mode property determines if MATLAB calculates a value for the property (mode is
auto) or if the property uses a specified value (mode is manual).

Default Values for Automatically Calculated Properties
Defining a default value for an automatically calculated property requires two steps:

• Define the property default value
• Define the default value of the mode property as manual

Setting X-Axis Limits

Suppose you want to define default values for the x-axis limits. Because the axes XLim
property is usually automatically calculated, you must set the associated mode property
(XLimMode) to manual.

set(groot,'defaultAxesXLim',[0 8])
set(groot,'defaultAxesXLimMode','manual')
plot(1:20)

The axes uses the default x-axis limits of [0 8]:

11 Default Values

11-6

 Default Values for Automatically Calculated Properties

11-7

How MATLAB Finds Default Values
All graphics object properties have values built into MATLAB. These values are called
factory-defined values. Any property for which you do not specify a value uses the
predefined value.

You can also define your own default values. MATLAB uses your default value unless you
specify a value for the property when you create the object.

MATLAB searches for a default value beginning with the current object and continuing
through the object's ancestors until it finds a user-defined default value or until it reaches
the factory-defined value. Therefore, a search for property values is always satisfied.

MATLAB determines the value to use for a given property according to this sequence of
steps:

1 Property default value specified as argument to the plotting function
2 If object is a line created by a high-level plotting function like plot, the axes

ColorOrder and LineStyleOrder definitions override default values defined for
the Color or LineStyle properties.

3 Property default value defined by axes (defaults can be cleared by plotting functions)
4 Property default value defined by figure
5 Property default value defined by root
6 If not default is defined, use factory default value

Setting default values affects only those objects created after you set the default. Existing
graphics objects are not affected.

11 Default Values

11-8

Factory-Defined Property Values
MATLAB defines values for all graphics object properties. Plotting functions use these
values if you do not specify values as arguments or as defaults. Generate a list of all
factory-defined values with the statement

a = get(groot,'Factory');

get returns a structure array whose field names are the object type and property name
concatenated, and field values are the factory value for the indicated object and property.
For example, this field,

factoryAxesVisible: 'on'

indicates that the factory value for the Visible property of axes objects is on.

You can get the factory value of an individual property with

get(groot,'factoryObjectTypePropertyName')

For example:

get(groot,'factoryTextFontName')

 Factory-Defined Property Values

11-9

Define Default Line Styles
This example shows how to set default line styles.

The plot function cycles through the colors defined by the axes ColorOrder property
when displaying multiline plots. If you define more than one value for the axes
LineStyleOrder property, plot increments the line style after each cycle through the
colors.

This example sets default values for axes objects on the root level:

set(groot,'DefaultAxesColorOrder',[0 0 0],...
 'DefaultAxesLineStyleOrder','-|--|:|-.')

Now, whenever you call plot, it uses black for all data plotted because the axes
ColorOrder contains only one color, but it cycles through the line styles defined for
LineStyleOrder.

Z = peaks;
x = 1:length(Z);
y = Z(4:7,:);
plot(x,y)

11 Default Values

11-10

 Define Default Line Styles

11-11

Multilevel Default Values
This example sets default values on more than one level in the hierarchy. These
statements create two axes in one figure window, setting default values on the figure level
and the axes level:

t = 0:pi/20:2*pi;
s = sin(t);
c = cos(t);
figure('defaultAxesPlotBoxAspectRatio',[1 1 1],...
 'defaultAxesPlotBoxAspectRatioMode','manual');
subplot(1,2,1,'defaultLineLineWidth',2);
hold on
plot(t,s,t,c)
text('Position',[3 0.4],'String','Sine')
text('Position',[2 -0.3],'String','Cosine')

subplot(1,2,2,'defaultTextRotation',90);
hold on
plot(t,s,t,c)
text('Position',[3 0.4],'String','Sine')
text('Position',[2 -0.3],'String','Cosine')

11 Default Values

11-12

Issuing the same plot and text statements to each subplot region results in a different
display, reflecting different default values defined for the axes. The default defined on the
figure applies to both axes.

It is necessary to call hold on to prevent the plot function from resetting axes
properties.

Note If a property has an associated mode property (for example,
PlotBoxAspectRatio and PlotBoxAspectRatioMode), you must define a default
value of manual for the mode property when you define a default value for the associated
property.

 Multilevel Default Values

11-13

Graphics Object Callbacks

• “Callbacks — Programmed Response to User Action” on page 12-2
• “Callback Definition” on page 12-4
• “Button Down Callback Function” on page 12-7
• “Define a Context Menu” on page 12-9
• “Define an Object Creation Callback” on page 12-11
• “Define an Object Deletion Callback” on page 12-13
• “Capturing Mouse Clicks” on page 12-14
• “Pass Mouse Click to Group Parent” on page 12-18
• “Pass Mouse Click to Obscured Object” on page 12-21

12

Callbacks — Programmed Response to User Action

In this section...
“What Are Callbacks?” on page 12-2
“Window Callbacks” on page 12-2

What Are Callbacks?
A callback is a function that executes in response to some predefined user action, such as
clicking on a graphics object or closing a figure window. Associate a callback with a
specific user action by assigning a function to the callback property for that user action.

All graphics objects have the following properties for which you can define callback
functions:

• ButtonDownFcn — Executes when you press the left mouse button while the cursor is
over the object or is within a few pixels of the object.

• CreateFcn — Executes during object creation after MATLAB set all properties
• DeleteFcn — Executes just before MATLAB deletes the object

Note When you call a plotting function, such as plot or bar, MATLAB creates new
graphics objects and resets most figure and axes properties. Therefore, callback functions
that you have defined for graphics objects can be removed by MATLAB. To avoid this
problem, see “Define a Callback as a Default” on page 12-6.

Window Callbacks
Figures have additional properties that execute callbacks with specific user actions:

• CloseRequestFcn — Executes when a request is made to close the figure (by a
close command, by the window manager menu, or by quitting MATLAB).

• KeyPressFcn — Executes when you press a key while the cursor is in the figure
window.

• ResizeFcn — Executes when you resize the figure window.

12 Graphics Object Callbacks

12-2

• WindowButtonDownFcn — Executes when you press a mouse button while the cursor
is over the figure background, a disabled user-interface control, or the axes
background.

• WindowButtonMotionFcn— Executes when you move the cursor in the figure
window (but not over menus or title bar).

• WindowButtonUpFcn — Executes when you release the mouse button, after having
pressed the mouse button in the figure.

 Callbacks — Programmed Response to User Action

12-3

Callback Definition
In this section...
“Ways to Specify Callbacks” on page 12-4
“Callback Function Syntax” on page 12-4
“Related Information” on page 12-5
“Define a Callback as a Default” on page 12-6

Ways to Specify Callbacks
To use callback properties, assign the callback code to the property. Use one of the
following techniques:

• A function handle that references the function to execute.
• A cell array containing a function handle and additional arguments
• A character vector that evaluates to a valid MATLAB expression. MATLAB evaluates

the character vector in the base workspace.

Defining a callback as a character vector is not recommended. The use of a function
specified as function handle enables MATLAB to provide important information to your
callback function.

For more information, see “Callback Function Syntax” on page 12-4.

Callback Function Syntax
Graphics callback functions must accept at least two input arguments:

• The handle of the object whose callback is executing. Use this handle within your
callback function to refer to the callback object.

• The event data structure, which can be empty for some callbacks or contain specific
information that is described in the property description for that object.

Whenever the callback executes as a result of the specific triggering action, MATLAB
calls the callback function and passes these two arguments to the function .

For example, define a callback function called lineCallback for the lines created by the
plot function. With the lineCallback function on the MATLAB path, use the @ operator

12 Graphics Object Callbacks

12-4

to assign the function handle to the ButtonDownFcn property of each line created by
plot.

plot(x,y,'ButtonDownFcn',@lineCallback)

Define the callback to accept two input arguments. Use the first argument to refer to the
specific line whose callback is executing. Use this argument to set the line Color
property:

function lineCallback(src,~)
 src.Color = 'red';
end

The second argument is empty for the ButtonDownFcn callback. The ~ character
indicates that this argument is not used.

Passing Additional Input Arguments

To define additional input arguments for the callback function, add the arguments to the
function definition, maintaining the correct order of the default arguments and the
additional arguments:

function lineCallback(src,evt,arg1,arg2)
 src.Color = 'red';
 src.LineStyle = arg1;
 src.Marker = arg2;
end

Assign a cell array containing the function handle and the additional arguments to the
property:

plot(x,y,'ButtonDownFcn',{@lineCallback,'--','*'})

You can use an anonymous function to pass additional arguments. For example:

plot(x,y,'ButtonDownFcn',...
 @(src,eventdata)lineCallback(src,eventdata,'--','*'))

Related Information
For information on using anonymous functions, see “Anonymous Functions”.

For information about using class methods as callbacks, see “Class Methods for Graphics
Callbacks”.

 Callback Definition

12-5

For information on how MATLAB resolves multiple callback execution, see the
BusyAction and Interruptible properties of the objects defining callbacks.

Define a Callback as a Default
You can assign a callback to the property of a specific object or you can define a default
callback for all objects of that type.

To define a ButtonDownFcn for all line objects, set a default value on the root level.

• Use the groot function to specify the root level of the object hierarchy.
• Define a callback function that is on the MATLAB path.
• Assign a function handle referencing this function to the

defaultLineButtonDownFcn.

set(groot,'defaultLineButtonDownFcn',@lineCallback)

The default value remains assigned for the MATLAB session. You can make the default
value assignment in your startup.m file.

12 Graphics Object Callbacks

12-6

Button Down Callback Function
In this section...
“When to Use a Button Down Callback” on page 12-7
“How to Define a Button Down Callback” on page 12-7

When to Use a Button Down Callback
Button down callbacks execute when users left-click on the graphics object for which the
callback is assigned. Button down callbacks provide a simple way for users to interact
with an object without requiring you to program additional user-interface objects, like
push buttons or popup menu.

Program a button down callback when you want users to be able to:

• Perform a single operation on a graphics object by left-clicking
• Select among different operations performed on a graphics object using modifier keys

in conjunction with a left-click

How to Define a Button Down Callback
• Create the callback function that MATLAB executes when users left-click on the

graphics object.
• Assign a function handle that references the callback function to the ButtonDownFcn

property of the object.

...'ButtonDownFcn',@callbackFcn

Define the Callback Function

In this example, the callback function is called lineCallback. When you assign the
function handle to the ButtonDownFcn property, this function must be on the MATLAB
path.

Values used in the callback function include:

• src — The handle to the line object that the user clicks. MATLAB passes this handle .
• src.Color — The line object Color property.

 Button Down Callback Function

12-7

function lineCallback(src,~)
 src.Color = rand(1,3);
end

Using the Callback

Here is a call to the plot function that creates line graphs and defines a button down
callback for each line created.

plot(rand(1,5),'ButtonDownFcn',@lineCallback)

To use the callback, create the plot and left-click on a line.

12 Graphics Object Callbacks

12-8

Define a Context Menu
This example shows how to define a context menu.

When to Use a Context Menu
Context menus are displayed when users right-click the graphics object for which you
assign the context menu. Context menus enable you to provide choices to users for
interaction with graphics objects.

Program a context menu when you want user to be able to:

• Choose among specific options by right-clicking a graphics object.
• Provide an indication of what each option is via the menu label.
• Produce a specific result without knowing key combinations.

How to Define a Context Menu
• Create a uicontextmenu object and save its handle.
• Create each menu item using uimenu.
• Define callbacks for each menu item in the context menu.
• Parent the individual menu items to the context menu and assign the respective

callback.
• Assign the context menu handle to the UIContextMenu property of the object for

which you are defining the context menu.

function cmHandle = defineCM
 cmHandle = uicontextmenu;
 uimenu(cmHandle,'Label','Wider','Callback',@increaseLW);
 uimenu(cmHandle,'Label','Inspect','Callback',@inspectLine);
end
function increaseLW(~,~)
% Increase line width
 h = gco;
 orgLW = h.LineWidth;
 h.LineWidth = orgLW+1;
end
function inspectLine(~,~)
% Open the property inspector

 Define a Context Menu

12-9

 h = gco;
 inspect(h)
end

The defineCM function returns the handle to the context menu that it creates. Assign this
handle to the UIContextMenu property of the line objects as they are created by the
plot function:

plot(rand(1,5),'UIContextMenu',defineCM)

Use a similar programming pattern for your specific requirements.

12 Graphics Object Callbacks

12-10

Define an Object Creation Callback
This example shows how to define an object creation callback.

Define an object creation callback that specifies values for the LineWidth and Marker
properties of line objects.

function lineCreate(src,~)
 src.LineWidth = 2;
 src.Marker = 'o';
end

Assign this function as the default line creation callback using the line CreateFcn
property:

set(groot,'defaultLineCreateFcn',@lineCreate)

The groot function specifies the root of the graphics object hierarchy. Therefore, all lines
created in any given MATLAB session acquire this callback. All plotting functions that
create lines use these defaults.

An object’s creation callback executes directly after MATLAB creates the object and sets
all its property values. Therefore, the creation callback can override property name/value
pairs specified in a plotting function. For example:

set(groot,'defaultLineCreateFcn',@lineCreate)
h = plot(1:10,'LineWidth',.5,'Marker','none')

The creation callback executes after the plot function execution is complete. The
LineWidth and Marker property values of the resulting line are those values specified in
the creation callback:

h =

 Line with properties:

 Color: [0 0 1]
 LineStyle: '-'
 LineWidth: 2
 Marker: 'o'
 MarkerSize: 6
 MarkerFaceColor: 'none'
 XData: [1 2 3 4 5 6 7 8 9 10]

 Define an Object Creation Callback

12-11

 YData: [1 2 3 4 5 6 7 8 9 10]
 ZData: []

Related Information
For information about defining callback functions, see “Callback Definition” on page 12-4

12 Graphics Object Callbacks

12-12

Define an Object Deletion Callback
You can create an object deletion callback that executes code when you delete the object.

For example, create an object deletion callback for a figure so that when you delete the
figure a dialog appears asking if you want to delete all the figures. Copy the following
code to a new function file and save it as figDelete.m either in the current folder or in a
folder on the MATLAB search path.

function figDelete(~,~)
yn = questdlg('Delete all figures?',...
 'Figure Menu',...
 'Yes','No','No');
switch yn
 case 'Yes'
 allfigs = findobj(get(groot,'Children'),'Type','figure');
 set(allfigs,'DeleteFcn',[]);
 delete(allfigs)
 case 'No'
 return
end
end

Then create two figures and assign the figDelete function to the DeleteFcn
properties. Delete one of the figures and choose an option on the dialog that appears.

figure('DeleteFcn',@figDelete)
figure('DeleteFcn',@figDelete)

 Define an Object Deletion Callback

12-13

Capturing Mouse Clicks

In this section...
“Properties That Control Response to Mouse Clicks” on page 12-14
“Combinations of PickablePart/HitTest Values” on page 12-15
“Passing Mouse Click Up the Hierarchy” on page 12-15

Properties That Control Response to Mouse Clicks
There are two properties that determine if and how objects respond to mouse clicks:

• PickableParts — Determines if an object captures mouse clicks
• HitTest — Determines if the object can respond to the mouse click it captures or

passes the click to its closest ancestor.

Objects pass the click through the object hierarchy until reaching an object that can
respond.

Programming a Response to a Mouse Click

When an object captures and responds to a mouse click, the object:

• Executes its button down function in response to a mouse left-click — If the object
defines a callback for the ButtonDownFcn property, MATLAB executes this callback.

• Displays context menu in response to a mouse right-click — If the object defined a
context menu using the UIContextMenu property, MATLAB invokes this context
menu.

Note Figures do not have a PickableParts property. Figures execute button callback
functions regardless of the setting of their HitTest property.

Note If the axes PickableParts property is set to 'none', the axes children cannot
capture mouse clicks. In this case, all mouse clicks are captured by the figure.

12 Graphics Object Callbacks

12-14

Combinations of PickablePart/HitTest Values
Use the PickableParts and HitTest properties to implement the following behaviors:

• Clicked object captures mouse click and responds with button down callback or
context menu.

• Clicked object captures mouse click and passes the mouse click to one of its ancestors,
which can respond with button down callback or context menu.

• Clicked object does not capture mouse click. Mouse click can be captured by objects
behind the clicked object.

This table summarizes the response to a mouse click based on property values.

Axes
PickableParts

PickableParts HitTest Result of Mouse Click

visible/all visible (default) on (default) Clicking visible parts of object
executes button down callback or
invokes context menu

visible/all all on Clicking any part of the object,
even if not visible, makes object
current and executes button down
callback or invokes context menu

visible/all/none none on/off Clicking the object never makes it
the current object and can never
execute button down callback or
invoke context menu

none visible/all/none on/off Clicking any axes child objects
never executes button down
callback or invokes context menu

MATLAB searches ancestors using the Parent property of each object until finding a
suitable ancestor or reaching the figure.

Passing Mouse Click Up the Hierarchy
Consider the following hierarchy of objects and their PickableParts and HitTest
property settings.

 Capturing Mouse Clicks

12-15

This code creates the hierarchy:

function pickHit
f = figure;
ax = axes;
p = patch(rand(1,3),rand(1,3),'g');
l = line([1 0],[0 1]);
set(f,'ButtonDownFcn',@(~,~)disp('figure'),...
 'HitTest','off')
set(ax,'ButtonDownFcn',@(~,~)disp('axes'),...
 'HitTest','off')
set(p,'ButtonDownFcn',@(~,~)disp('patch'),...
 'PickableParts','all','FaceColor','none')

12 Graphics Object Callbacks

12-16

set(l,'ButtonDownFcn',@(~,~)disp('line'),...
 'HitTest','off')
end

Click the Line

Left-click the line:

• The line becomes the current object, but cannot execute its ButtonDownFcn callback
because its HitTest property is off.

• The line passes the hit to the closest ancestor (the parent axes), but the axes cannot
execute its ButtonDownFcn callback, so the axes passes the hit to the figure.

• The figure can execute its callback, so MATLAB displays figure in the Command
Window.

Click the Patch

The patch FaceColor is none. However, the patch PickableParts is all, so you can
pick the patch by clicking the empty face and the edge.

The patch HitTest property is on so the patch can become the current object. When the
patch becomes the current object, it executes its button down callback.

 Capturing Mouse Clicks

12-17

Pass Mouse Click to Group Parent
This example shows how a group of objects can pass a mouse click to a parent, which
operates on all objects in the group.

Objective and Design
Suppose you want a single mouse click on any member of a group of objects to execute a
single button down callback affecting all objects in the group.

• Define the graphics objects to be added to the group.
• Assign an hggroup object as the parent of the graphics objects.
• Define a function to execute when any of the objects are clicked. Assign its function

handle to the hggroup object’s ButtonDownFcn property.
• Set the HitTest property of every object in the group to off so that the mouse click

is passed to the object’s parent.

Object Hierarchy and Key Properties
This example uses the following object hierarchy.

12 Graphics Object Callbacks

12-18

MATLAB Code
Create a file with two functions:

• pickPatch — The main function that creates the graphics objects.
• groupCB — The local function for the hggroup callback.

The pickPatch function creates three patch objects and parents them to an hggroup
object. Setting the HitTest property of each patch to off directs mouse clicks to the
parent.

function pickPatch
 figure
 x = [0 1 2];
 y = [0 1 0];
 hGroup = hggroup('ButtonDownFcn',@groupCB);
 patch(x,y,'b',...
 'Parent',hGroup,...

 Pass Mouse Click to Group Parent

12-19

 'HitTest','off')
 patch(x+2,y,'b',...
 'Parent',hGroup,...
 'HitTest','off')
 patch(x+3,y,'b',...
 'Parent',hGroup,...
 'HitTest','off')
end

The groupCB callback operates on all objects contained in the hggroup. The groupCB
function uses the callback source argument passed to the callback (src) to obtain the
handles of the patch objects.

Using the callback source argument (which is the handle to hggroup object) eliminates
the need to create global data or pass additional arguments to the callback.

A left-click on any patch changes the face color of all three patches to a random RGB
color value.

function groupCB(src,~)
 s = src.Children;
 set(s,'FaceColor',rand(1,3))
 end
end

For more information on callback functions, see “Callback Definition” on page 12-4

12 Graphics Object Callbacks

12-20

Pass Mouse Click to Obscured Object
This example shows how to pass mouse clicks to an obscured object.

Set the PickableParts property of a graphics object to none to prevent the object from
capturing a mouse click. This example:

• Defines a context menu for the axes that calls hold with values on or off
• Creates graphs in which none of the data objects can capture mouse clicks, enabling

all right-clicks to pass to the axes and invoke the context menu.

The axesHoldCM function defines a context menu and returns its handle.

function cmHandle = axesHoldCM
 cmHandle = uicontextmenu;
 uimenu(cmHandle,'Label','hold on','Callback',@holdOn);
 uimenu(cmHandle,'Label','hold off','Callback',@holdOff);
end
function holdOn(~,~)
 fig = gcbf;
 ax = fig.CurrentAxes;
 hold(ax,'on')
end
function holdOff(~,~)
 fig = gcbf;
 ax = fig.CurrentAxes;
 hold(ax,'off')
end

Create a bar graph and set the PickableParts property of the Bar objects:

bar(1:20,'PickableParts','none')

Create the context menu for the current axes:

ax = gca;
ax.UIContextMenu = axesHoldCM

Right-click over the bars in the graph and display the axes context menu:

 Pass Mouse Click to Obscured Object

12-21

12 Graphics Object Callbacks

12-22

Graphics Objects

• “Graphics Objects” on page 13-2
• “Features Controlled by Graphics Objects” on page 13-7

13

Graphics Objects
In this section...
“MATLAB Graphics Objects” on page 13-2
“Graphs Are Composed of Specific Objects” on page 13-2
“Organization of Graphics Objects” on page 13-2

MATLAB Graphics Objects
Graphics objects are the visual components used by MATLAB to display data graphically.
For example, a graph can contain lines, text, and axes, all displayed in a figure window.

Each object has a unique identifier called a handle. Using this handle, you can manipulate
the characteristics of an existing graphics object by setting object properties. You can
also specify values for properties when you create a graphics object. Typically, you create
graphics objects using plotting functions like plot, bar, scatter, and so on.

Graphs Are Composed of Specific Objects
When you create a graph, for example by calling the plot function, MATLAB
automatically performs a number of steps to produce the graph. These steps involve
creating objects and setting the properties of these objects to appropriate values for your
specific graph.

Organization of Graphics Objects
Graphics objects are organized into a hierarchy, as shown by the following diagram.

13 Graphics Objects

13-2

The hierarchical nature of graphics objects reflects the containment of objects by other
objects. Each object plays a specific role in the graphics display.

For example, suppose you create a line graph with the plot function. An axes object
defines a frame of reference for the lines that represent data. A figure is the window to
display the graph. The figure contains the axes and the axes contains the lines, text,
legends, and other objects used to represent the graph.

Note An axes is a single object that represents x-, y-, and z-axis scales, tick marks, tick
labels, axis labels, and so on.

Here is a simple graph.

 Graphics Objects

13-3

This graph forms a hierarchy of objects.

13 Graphics Objects

13-4

Parent-Child Relationship

The relationship among objects is held in the Parent and Children properties. For
example, the parent of an axes is a figure. The Parent property of an axes contains the
handle to the figure in which it is contained.

Similarly, the Children property of a figure contains any axes that the figure contains.
The figure Children property also contains the handles of any other objects it contains,
such as legends and user-interface objects.

You can use the parent-child relationship to find object handles. For example, if you create
a plot, the current axes Children property contains the handles to all the lines:

plot(rand(5))
ax = gca;
ax.Children

 Graphics Objects

13-5

ans =

 5x1 Line array:

 Line
 Line
 Line
 Line
 Line

You can also specify the parent of objects. For example, create a group object and parent
the lines from the axes to the group:

hg = hggroup;
plot(rand(5),'Parent',hg)

13 Graphics Objects

13-6

Features Controlled by Graphics Objects
In this section...
“Purpose of Graphics Objects” on page 13-7
“Figures” on page 13-7
“Axes” on page 13-8
“Objects That Represent Data” on page 13-9
“Group Objects” on page 13-10
“Annotation Objects” on page 13-11

Purpose of Graphics Objects
Graphics objects represent data in intuitive and meaningful ways, such as line graphs,
images, text, and combinations of these objects. Graphics objects act as containers for
other objects or as representations of data.

• Containers — Figures display all graphics objects. Panels and groups enable
collections of objects to be treated as one entity for some operations.

• Axes are containers that define a coordinate system for the objects that represent the
actual data in graphs.

• Data visualization objects — Lines, text, images, surfaces, and patches that implement
various types of graphs.

Figures
Figures are the windows in which MATLAB displays graphics. Figures contain menus,
toolbars, user-interface objects, context menus, and axes.

Figures play two distinct roles in MATLAB:

• Containing graphs of data
• Containing user interfaces (which can include graphs in the interface)

Graphics Features Controlled by Figures

Figure properties control certain characteristics that affect graphs:

 Features Controlled by Graphics Objects

13-7

• Color and transparency of surfaces and patches — Alphamap and Colormap
• Appearance of plotted lines and axes grid lines — GraphicsSmoothing
• Printing and exporting graphs — figure printing properties
• Drawing speed and rendering features — Renderer

Figures use different drawing methods called renderers. There are two renderers:

• OpenGL — The default renderer used by MATLAB for most applications. For more
information, see opengl.

• Painters — Use when OpenGL has problems on a computer with particular graphics
hardware that has software defects or outdated software drivers. Also used for
exporting graphics for certain formats, such as PDF.

Note For best results, ensure that your computer has the latest graphics hardware
drivers supplied by the hardware vendor.

For a list of all figure properties, see Figure

Axes
MATLAB creates an axes to define the coordinate system of each graph. Axes are always
contained by a figure object. Axes themselves contain the graphics objects that represent
data.

Axes control many aspects of how MATLAB displays graphical information.

Graphics Features Controlled by Axes

Much of what you can customize in a graph is controlled by axes properties.

• Axis limits, orientation, and tick placement
• Axis scales (linear or logarithmic)
• Grid control
• Font characteristics for the title and axis labels.
• Default line colors and line styles for multiline graphs
• Axis line and grid control
• Color scaling of objects based on colormap

13 Graphics Objects

13-8

• View and aspect ratio
• Clipping graphs to axis limits
• Controlling axes resize behavior
• Lighting and transparency control

For a list of all axes properties, see Axes

Objects That Represent Data
Data objects are the lines, images, text, and polygons that graphs use to represent data.
For example:

• Lines connect data points using specified x- and y-coordinates.
• Markers locate scattered data in some range of values.
• Rectangular bars indicate distribution of values in a histogram.

Because there are many kinds of graphs, there are many types of data objects. Some are
general purpose, such as lines and rectangles and some are highly specialized, such as
errorbars, colorbars, and legends.

Graphics Features Controlled by Data Objects

Data object properties control the appearance of the object and also contain the data that
defines the object. Data object properties can also control certain behaviors.

• Data — Change the data to update the graph. Many data objects can link their data
properties to workspace variables that contain the data.

• Color Data — Objects can control how data maps to colors by specifying color data.
• Appearance — Specify colors of line, markers, polygon faces as well as line styles,

marker types.
• Specific behaviors — Properties can control how the object interprets or displays its

data. For example, Bar objects have a property called BarLayout that determines if
the bars are grouped or stacked. Contour objects have a LevelList property that
specifies the contour intervals at which to draw contour lines.

High-Level vs. Low-Level Functions

Plotting functions create data objects in one of two ways:

 Features Controlled by Graphics Objects

13-9

• High-level functions — Create complete graphs that replace existing graphs with new
ones. High-level functions include plot, bar, scatter, and so on. For a summary of
high-level functions, see “Types of MATLAB Plots” on page 1-2.

• Low-level functions — Add graphics objects with minimal changes to the existing
graph. Low-level functions include line, patch, rectangle, surface, text, image,
and light.

Group Objects
Group objects enable you to treat a number of data objects as one entity. For example,
you can make the entire group visible or invisible, select all objects when only one is
clicked, or apply a transform matrix to rotate, translate, or scale all the objects in the
group.

This code parents the plotted lines to the group object returned by the hggroup function.
The text object is not part of the group.

y = magic(5);
hg = hggroup;
plot(y,'Parent',hg)
text(2.5,10,'Plot of 5x5 magic square')

13 Graphics Objects

13-10

Annotation Objects
Annotation objects comprise arrows, text boxes, and combinations of both. Annotation
objects have special features that overcome the limitations of data objects used to
annotate graphs:

• Annotation objects are children of the figure.
• You can easily locate annotations anywhere in the figure.
• Define the location of annotation objects in normalized figure coordinates: lower left =

(0,0), upper right = (1,1), making their placement independent of range of data
represented by the axes.

 Features Controlled by Graphics Objects

13-11

Note MATLAB parents annotation objects to a special layer. Do not attempt to parent
objects to this layer. MATLAB automatically assigns annotation objects to the appropriate
parent.

13 Graphics Objects

13-12

Group Objects

• “Object Groups” on page 14-2
• “Create Object Groups” on page 14-3
• “Transforms Supported by hgtransform” on page 14-5
• “Rotate About an Arbitrary Axis” on page 14-10
• “Nest Transforms for Complex Movements” on page 14-14

14

Object Groups
Group objects are invisible containers for graphics objects. Use group objects to form a
collection of objects that can behave as one object in certain respects. When you set
properties of the group object, the result applies to the objects contained in the group.

For example, you can make the entire group visible or invisible, select all objects when
only one is clicked, or apply a transform matrix to reposition the objects.

Group objects can contain any of the objects that axes can contain, such as lines,
surfaces, text, and so on. Group objects can also contain other group objects. Group
objects are always parented to an axes object or another group object.

There are two kinds of group objects:

• Group — Use when you want to create a group of objects and control the visibility or
selectability of the group based on what happens to any individual object in the group.
Create group objects with the hggroup function.

• Transform — Use when you want to transform a group of objects. Transforms include
rotation, translation, and scaling. For an example, see “Nest Transforms for Complex
Movements” on page 14-14. Create transform objects with the hgtransform
function.

The difference between the group and transform objects is that the transform object can
apply a transform matrix (via its Matrix property) to all objects for which it is the parent.

14 Group Objects

14-2

Create Object Groups

In this section...
“Parent Specification” on page 14-4
“Visible and Selected Properties of Group Children” on page 14-4

Create an object group by parenting objects to a group or transform object. For example,
call hggroup to create a group object and save its handle. Assign this group object as the
parent of subsequently created objects:

hg = hggroup;
plot(rand(5),'Parent',hg)
text(3,0.5,'Random lines','Parent',hg)

Setting the visibility of the group to off makes the line and text objects it contains
invisible.

hg.Visible = 'off';

You can add objects to a group selectively. For example, the following call to the bar
function returns the handles to five separate bar objects:

hb = bar(randn(5))

hb =

 1x5 Bar array:

 Bar Bar Bar Bar Bar

Parent the third, fourth, and fifth bar object to the group:

hg = hggroup;
set(hb(3:5),'Parent',hg)

Group objects can be the parent of any number of axes children, including other group
objects. For examples, see “Rotate About an Arbitrary Axis” on page 14-10 and “Nest
Transforms for Complex Movements” on page 14-14.

 Create Object Groups

14-3

Parent Specification
Plotting functions clear the axes before generating their graph. However, if you assign a
group or transform as the Parent in the plotting function, the group or transform object
is not cleared.

For example:

hg = hggroup;
hb = bar(randn(5));
set(hb,'Parent',hg)

Error using matlab.graphics.chart.primitive.Bar/set
Cannot set property to a deleted object

The bar function cleared the axes. However, if you set the Parent property as a name/
value pair in the bar function arguments, the bar function does not delete the group:

hg = hggroup;
hb = bar(randn(5),'Parent',hg);

Visible and Selected Properties of Group Children
Setting the Visible property of a group or transform object controls whether all the
objects in the group are visible or not visible. However, changing the state of the
Visible property for the group object does not change the state of this property for the
individual objects. The values of the Visible property for the individual objects are
preserved.

For example, if the Visible property of the group is set to off and subsequently set to on,
only the objects that were originally visible are displayed.

The same behavior applies to the Selected and SelectionHighlight properties. The
children of the group or transform object show the state of the containing object
properties without actually changing their own property values.

14 Group Objects

14-4

Transforms Supported by hgtransform

In this section...
“Transforming Objects” on page 14-5
“Rotation” on page 14-5
“Translation” on page 14-6
“Scaling” on page 14-6
“The Default Transform” on page 14-7
“Disallowed Transforms: Perspective” on page 14-7
“Disallowed Transforms: Shear” on page 14-7
“Absolute vs. Relative Transforms” on page 14-8
“Combining Transforms into One Matrix” on page 14-8
“Undoing Transform Operations” on page 14-9

Transforming Objects
The transform object's Matrix property applies a transform to all the object’s children in
unison. Transforms include rotation, translation, and scaling. Define a transform with a
four-by-four transformation matrix.

Creating a Transform Matrix

The makehgtform function simplifies the construction of matrices to perform rotation,
translation, and scaling. For information on creating transform matrices using
makehgtform, see “Nest Transforms for Complex Movements” on page 14-14.

Rotation
Rotation transforms follow the right-hand rule — rotate objects about the x-, y-, or z-axis,
with positive angles rotating counterclockwise, while sighting along the respective axis
toward the origin. If the angle of rotation is theta, the following matrix defines a rotation
of theta about the x-axis.

 Transforms Supported by hgtransform

14-5

1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos

q q

q q

x x

x x

−


















To create a transform matrix for rotation about an arbitrary axis, use the makehgtform
function.

Translation
Translation transforms move objects with respect to their current locations. Specify the
translation as distances tx, ty, and tz in data space units. The following matrix shows the
location of these elements in the transform matrix.

1 0 0

0 1 0

0 0 1

0 0 0 1

t

t

t

x

y

z



















Scaling
Scaling transforms change the sizes of objects. Specify scale factors sx, sy, and sz and
construct the following matrix.

s

s

s

x

y

z

0 0 0

0 0 0

0 0 0

0 0 0 1



















You cannot use scale factors less than or equal to zero.

14 Group Objects

14-6

The Default Transform
The default transform is the identity matrix, which you can create with the eye function.
Here is the identity matrix.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















See “Undoing Transform Operations” on page 14-9.

Disallowed Transforms: Perspective
Perspective transforms change the distance at which you view an object. The following
matrix is an example of a perspective transform matrix, which MATLAB graphics does not
allow.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0p
x

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

In this case, py is the perspective factor.

Disallowed Transforms: Shear
Shear transforms keep all points along a given line (or plane, in 3-D coordinates) fixed
while shifting all other points parallel to the line (plane) proportional to their
perpendicular distance from the fixed line (plane). The following matrix is an example of a
shear transform matrix, which hgtransform does not allow.

 Transforms Supported by hgtransform

14-7

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

s
x

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

In this case, sx is the shear factor and can replace any zero element in an identity matrix.

Absolute vs. Relative Transforms
Transforms are specified in absolute terms, not relative to the current transform. For
example, if you apply a transform that translates the transform object 5 units in the x
direction, and then you apply another transform that translates it 4 units in the y
direction, the resulting position of the object is 4 units in the y direction from its original
position.

If you want transforms to accumulate, you must concatenate the individual transforms
into a single matrix. See “Combining Transforms into One Matrix” on page 14-8.

Combining Transforms into One Matrix
It is usually more efficient to combine various transform operations into one matrix by
concatenating (multiplying) the individual matrices and setting the Matrix property to
the result. Matrix multiplication is not commutative, so the order in which you multiply
the matrices affects the result.

For example, suppose you want to perform an operation that scales, translates, and then
rotates. Assuming R, T and S are your individual transform matrices, multiply the
matrices as follows:

C = R*T*S % operations are performed from right to left

S is the scaling matrix, T is the translation matrix, R is the rotation matrix, and C is the
composite of the three operations. Then set the transform object's Matrix property to C:

hg = hgtransform('Matrix',C);

Multiplying the Transform by the Identity Matrix

The following sets of statements are not equivalent. The first set:

14 Group Objects

14-8

hg.Matrix = C;
hg.Matrix = eye(4);

results in the removal of the transform C. The second set:

I = eye(4);
C = I*R*T*S;
hg.Matrix = C;

applies the transform C. Concatenating the identity matrix to other matrices has no effect
on the composite matrix.

Undoing Transform Operations
Because transform operations are specified in absolute terms (not relative to the current
transform), you can undo a series of transforms by setting the current transform to the
identity matrix. For example:

hg = hgtransform('Matrix',C);
...
hg.Matrix = eye(4);

returns the objects contained by the transform object, hg, to their orientation before
applying the transform C.

For more information on the identity matrix, see the eye function

 Transforms Supported by hgtransform

14-9

Rotate About an Arbitrary Axis
This example shows how to rotate an object about an arbitrary axis.

Translate to Origin Before Rotating
Rotations are performed about the origin. Therefore, you need to perform a translation so
that the intended axis of rotation is temporarily at the origin. After applying the rotation
transform matrix, you then translate the object back to its original position.

Rotate Surface
This example shows how to rotate a surface about the y-axis.

Create Surface and Transform

Parent the surface to the transform object.

t = hgtransform;
surf(peaks(40),'Parent',t)
view(-20,30)
axis manual

14 Group Objects

14-10

Create Transform

Set a y-axis rotation matrix to rotate the surface by -15 degrees.

ry_angle = -15*pi/180;
Ry = makehgtform('yrotate',ry_angle);
t.Matrix = Ry;

 Rotate About an Arbitrary Axis

14-11

The surface rotated -15 degrees about the y-axis that passes through the origin.

Translate the Surface and Rotate

Now rotate the surface about the y-axis that passes through the point x = 20.

Create two translation matrices, one to translate the surface -20 units in x and another to
translate 20 units back. Concatenate the two translation matrices with the rotation matrix
in the correct order and set the transform.

Tx1 = makehgtform('translate',[-20 0 0]);
Tx2 = makehgtform('translate',[20 0 0]);
t.Matrix = Tx2*Ry*Tx1;

14 Group Objects

14-12

 Rotate About an Arbitrary Axis

14-13

Nest Transforms for Complex Movements
This example creates a nested hierarchy of transform objects, which are then transformed
in sequence to create a cube from six squares. The example illustrates how you can
parent transform objects to other transform objects to create a hierarchy, and how
transforming members of a hierarchy affects subordinate members.

Here is an illustration of the hierarchy.

14 Group Objects

14-14

 Nest Transforms for Complex Movements

14-15

The transform_foldbox function implements the transform hierarchy. The doUpdate
function renders each step. Place both functions in a file named transform_foldbox.m
and execute transform_foldbox.

function transform_foldbox
 % Create six square and fold
 % them into a cube

 figure

 % Set axis limits and view
 axes('Projection','perspective',...
 'XLim',[0 4],...
 'YLim',[0 4],...
 'ZLim',[0 3])
 view(3); axis equal; grid on

 % Create a hierarchy of transform objects
 t(1) = hgtransform;
 t(2) = hgtransform('parent',t(1));
 t(3) = hgtransform('parent',t(2));
 t(4) = hgtransform('parent',t(3));
 t(5) = hgtransform('parent',t(4));
 t(6) = hgtransform('parent',t(5));

 % Patch data
 X = [0 0 1 1];
 Y = [0 1 1 0];
 Z = [0 0 0 0];

 % Text data
 Xtext = .5;
 Ytext = .5;
 Ztext = .15;

 % Corresponding pairs of objects (patch and text)
 % are parented into the object hierarchy
 p(1) = patch('FaceColor','red','Parent',t(1));
 txt(1) = text('String','Bottom','Parent',t(1));
 p(2) = patch('FaceColor','green','Parent',t(2));
 txt(2) = text('String','Right','Parent',t(2));
 p(3) = patch('FaceColor','blue','Parent',t(3));
 txt(3) = text('String','Back','Color','white','Parent',t(3));
 p(4) = patch('FaceColor','yellow','Parent',t(4));

14 Group Objects

14-16

 txt(4) = text('String','Top','Parent',t(4));
 p(5) = patch('FaceColor','cyan','Parent',t(5));
 txt(5) = text('String','Left','Parent',t(5));
 p(6) = patch('FaceColor','magenta','Parent',t(6));
 txt(6) = text('String','Front','Parent',t(6));

 % All the patch objects use the same x, y, and z data
 set(p,'XData',X,'YData',Y,'ZData',Z)

 % Set the position and alignment of the text objects
 set(txt,'Position',[Xtext Ytext Ztext],...
 'HorizontalAlignment','center',...
 'VerticalAlignment','middle')

 % Display the objects in their current location
 doUpdate(1)

 % Set up initial translation transforms
 % Translate 1 unit in x
 Tx = makehgtform('translate',[1 0 0]);
 % Translate 1 unit in y
 Ty = makehgtform('translate',[0 1 0]);

 % Translate the unit squares to the desired locations
 % The drawnow and pause commands display
 % the objects after each translation
 set(t(2),'Matrix',Tx);
 doUpdate(1)
 set(t(3),'Matrix',Ty);
 doUpdate(1)
 set(t(4),'Matrix',Tx);
 doUpdate(1)
 set(t(5),'Matrix',Ty);
 doUpdate(1)
 set(t(6),'Matrix',Tx);
 doUpdate(1)

 % Specify rotation angle (pi/2 radians = 90 degrees)
 fold = pi/2;

 % Rotate -y, translate x
 Ry = makehgtform('yrotate',-fold);
 RyTx = Tx*Ry;

 Nest Transforms for Complex Movements

14-17

 % Rotate x, translate y
 Rx = makehgtform('xrotate',fold);
 RxTy = Ty*Rx;

 % Set the transforms
 % Draw after each group transform and pause
 set(t(6),'Matrix',RyTx);
 doUpdate(1)
 set(t(5),'Matrix',RxTy);
 doUpdate(1)
 set(t(4),'Matrix',RyTx);
 doUpdate(1)
 set(t(3),'Matrix',RxTy);
 doUpdate(1)
 set(t(2),'Matrix',RyTx);
 doUpdate(1)
end

function doUpdate(delay)
 drawnow
 pause(delay)
end

14 Group Objects

14-18

Control Legend Content

• “Add Legend to Graph” on page 15-2
• “Create Interactive Legends Using Callbacks” on page 15-11

15

Add Legend to Graph
Legends are a useful way to label data series plotted on a graph. These examples show
how to create a legend and make some common modifications, such as changing the
location, setting the font size, and adding a title. You also can create a legend with
multiple columns or create a legend for a subset of the plotted data.

Create Simple Legend

Create a figure with a line chart and a scatter chart. Add a legend with a description for
each chart. Specify the legend labels as inputs to the legend function.

figure
x1 = linspace(0,5);
y1 = sin(x1/2);
plot(x1,y1)

hold on
x2 = [0 1 2 3 4 5];
y2 = [0.2 0.3 0.6 1 0.7 0.6];
scatter(x2,y2,'filled')
hold off

legend('sin(x/2)','2016')

15 Control Legend Content

15-2

Specify Labels Using DisplayName

Alternatively, you can specify the legend labels using the DisplayName property. Set the
DisplayName property as a name-value pair when calling the plotting functions. Then,
call the legend command to create the legend.

x1 = linspace(0,5);
y1 = sin(x1/2);
plot(x1,y1,'DisplayName','sin(x/2)')

hold on
x2 = [0 1 2 3 4 5];
y2 = [0.2 0.3 0.6 1 0.7 0.6];
scatter(x2,y2,'filled','DisplayName','2016')

 Add Legend to Graph

15-3

legend

Legends automatically update when you add or delete a data series. If you add more data
to the axes, use the DisplayName property to specify the labels. If you do not set the
DisplayName property, then the legend uses a label of the form 'dataN'.

Add a scatter chart for 2017 data.

x3 = [0 1 2 3 4 5];
y3 = [0.1 0.4 0.6 0.9 0.8 0.7];
scatter(x3,y3,'filled','DisplayName','2017')
drawnow
hold off

15 Control Legend Content

15-4

Customize Legend Appearance

The legend function creates a Legend object. Legend objects have properties that you
can use to customize the appearance of the legend, such as the Location,
Orientation, FontSize, and Title properties. For a full list, see Legend Properties.

You can set properties in two ways:

• Use name-value pairs in the legend command. In most cases, when you use name-
value pairs, you must specify the labels in a cell array, such as
legend({'label1','label2'},'FontSize',14).

• Use the Legend object. You can return the Legend object as an output argument from
the legend function, such as lgd = legend. Then, use lgd with dot notation to set
properties, such as lgd.FontSize = 14.

Legend Location and Orientation

Specify the legend location and orientation by setting the Location and Orientation
properties as name-value pairs. Set the location to one of the eight cardinal or
intercardinal directions, in this case, 'northwest'. Set the orientation to 'vertical'
(the default) or 'horizontal', as in this case. Specify the labels in a cell array.

x1 = linspace(0,5);
y1 = sin(x1/2);
plot(x1,y1)

hold on
x2 = [0 1 2 3 4 5];
y2 = [0.2 0.3 0.6 1 0.7 0.6];
scatter(x2,y2,'filled')
hold off

legend({'sin(x/2)','2016'},'Location','northwest','Orientation','horizontal')

 Add Legend to Graph

15-5

Legend Font Size and Title

Specify the legend font size and title by setting the FontSize and Title properties.
Assign the Legend object to the variable lgd. Then, use lgd to change the properties
using dot notation.

x1 = linspace(0,5);
y1 = sin(x1/2);
plot(x1,y1,'DisplayName','sin(x/2)')

hold on
x2 = [0 1 2 3 4 5];
y2 = [0.2 0.3 0.6 1 0.7 0.6];
scatter(x2,y2,'filled','DisplayName','2016')

15 Control Legend Content

15-6

hold off

lgd = legend;
lgd.FontSize = 14;
lgd.Title.String = '2016 Data';

Legend with Multiple Columns

Create a chart with six line plots. Add a legend with two columns by setting the
NumColumns property to 2.

x = linspace(0,10);
y1 = sin(x);
y2 = sin(0.9*x);

 Add Legend to Graph

15-7

y3 = sin(0.8*x);
y4 = sin(0.7*x);
y5 = sin(0.6*x);
y6 = sin(0.5*x);

plot(x,y1,'DisplayName','sin(x)')
hold on
plot(x,y2,'DisplayName','sin(0.9x)')
plot(x,y3,'DisplayName','sin(0.8x)')
plot(x,y4,'DisplayName','sin(0.7x)')
plot(x,y5,'DisplayName','sin(0.6x)')
plot(x,y6,'DisplayName','sin(0.5x)')
hold off

lgd = legend;
lgd.NumColumns = 2;

15 Control Legend Content

15-8

Include Subset of Charts in Legend

Combine two bar charts and a scatter chart. Create a legend that includes only the bar
charts by specifying the Bar objects, b1 and b2, as the first input argument to the
legend function. Specify the objects in a vector.

x = [1 2 3 4 5];
y1 = [.2 .4 .6 .4 .2];
b1 = bar(x,y1);

hold on
y2 = [.1 .3 .5 .3 .1];
b2 = bar(x,y2,'BarWidth',0.5);

 Add Legend to Graph

15-9

y3 = [.2 .4 .6 .4 .2];
s = scatter(x,y3,'filled');
hold off

legend([b1 b2],'Bar Chart 1','Bar Chart 2')

See Also
Legend Properties | legend

15 Control Legend Content

15-10

Create Interactive Legends Using Callbacks

In this section...
“Toggle Chart Visibility” on page 15-11
“Toggle Chart Line Width” on page 15-12

You can create interactive legends so that when you click an item in the legend, the
associated chart updates in some way. For example, you can toggle the visibility of the
chart or change its line width. Set the ItemHitFcn property of the legend to a callback
function that controls how the charts change.

Toggle Chart Visibility
This example shows how to toggle the visibility of a chart when you click the chart icon or
label in a legend. It creates a callback function that changes the Visible property of the
chart to either 'on' or 'off'.

Copy the following code to a new function file and save it as hitcallback_ex1.m either
in the current folder or in a folder on the MATLAB search path. The two input arguments,
src and evnt, are the legend object and an event data structure. MATLAB automatically
passes these inputs to the callback function when you click an item in the legend. Use the
Peer field of the event data structure to access properties of the chart object associated
with the clicked legend item.

function hitcallback_ex1(src,evnt)

if strcmp(evnt.Peer.Visible,'on')
 evnt.Peer.Visible = 'off';
else
 evnt.Peer.Visible = 'on';
end

end

Then, plot four lines, create a legend, and assign the legend object to a variable. Set the
ItemHitFcn property of the legend object to the callback function. Click items in the
legend to show or hide the associated chart. The legend label changes to gray when you
hide a chart.

 Create Interactive Legends Using Callbacks

15-11

plot(rand(4));
l = legend('Line 1','Line 2','Line 3','Line 4');
l.ItemHitFcn = @hitcallback_ex1;

Toggle Chart Line Width
This example shows how to toggle the line width of a chart when you click the chart icon
or label in a legend. It creates a callback function that changes the LineWidth property
of the chart. Copy the following code to a new function file and save it as
hitcallback_ex2.m either in the current folder or in a folder on the MATLAB search
path.

15 Control Legend Content

15-12

function hitcallback_ex2(src,evnt)

if evnt.Peer.LineWidth == 3
 evnt.Peer.LineWidth = 0.5;
else
 evnt.Peer.LineWidth = 3;
end

end

Then, plot four lines, create a legend, and assign the legend object to a variable. Set the
ItemHitFcn property of the legend object to the callback function. Click items in the
legend to toggle the line width of the associated line. The legend icon updates to match
the line width.

plot(rand(4));
l = legend('Line 1','Line 2','Line 3','Line 4');
l.ItemHitFcn = @hitcallback_ex2;

 Create Interactive Legends Using Callbacks

15-13

See Also
Legend | legend

Related Examples
• “Callback Definition” on page 12-4

15 Control Legend Content

15-14

Working with Graphics Objects

• “Graphics Object Handles” on page 16-2
• “Preallocate Arrays of Graphics Objects” on page 16-4
• “Test for Valid Handle” on page 16-5
• “Handles in Logical Expressions” on page 16-6
• “Graphics Arrays” on page 16-8

16

Graphics Object Handles
In this section...
“What You Can Do with Handles” on page 16-2
“What You Cannot Do with Handles” on page 16-3

What You Can Do with Handles
A handle refers to a specific instance of a graphics object. Use the object handle to set
and query the values of the object properties.

When you create graphics objects, you can save the handle to the object in a variable. For
example:

x = 1:10;
y = x.^2;
plot(x,y);
h = text(5,25,'*(5,25)');

The variable h refers to this particular text object '*(5,25)', which is located at the
point 5,25. Use the handle h to query and set the properties of this text object.

Set font size

h.FontSize = 12;

Get font size

h.FontSize

ans =

 12

Make a copy of the variable h. The copy refers to the same object. For example, the
following statements create a copy of the handle, but not the object:

hNew = h;
hNew.FontAngle = 'italic';
h.FontAngle

16 Working with Graphics Objects

16-2

ans =

italic

What You Cannot Do with Handles
Handles variables are objects. Do not attempt to perform operations involving handles
that convert the handles to a numeric, character, or any other type. For example, you
cannot:

• Perform arithmetic operations on handles.
• Use handles directly in logical statements without converting to a logical value.
• Rely on the numeric values of figure handles (integers) in logical statements.
• Combine handles with data in numeric arrays.
• Convert handles to character vectors or use handles in character vector operations.

See Also

More About
• “Graphics Arrays” on page 16-8
• “Dominant Argument in Overloaded Graphics Functions”

 See Also

16-3

Preallocate Arrays of Graphics Objects
Use the gobjects function to preallocate arrays for graphics objects. You can fill in each
element in the array with a graphics object handle.

Preallocate a 4-by-1 array:

h = gobjects(4,1);

Assign axes handles to the array elements:

for k=1:4
 h(k) = subplot(2,2,k);
end

gobjects returns a GraphicsPlaceholder array. You can replace these placeholders
elements with any type of graphics object. You must use gobjects to preallocate
graphics object arrays to ensure compatibility among all graphics objects that are
assigned to the array.

16 Working with Graphics Objects

16-4

Test for Valid Handle
Use isgraphics to determine if a variable is a valid graphics object handle. A handle
variable (h in this case) can still exist, but not be a valid handle if the object to which it
refers has been deleted.

h = plot(1:10);
...
close % Close the figure containing the plot
whos

Name Size Bytes Class Attributes

 h 1x1 104 matlab.graphics.chart.primitive.Line

Test the validity of h:

isgraphics(h)

ans =

 0

For more information on deleted handles, see “Deleted Handle Objects”.

 Test for Valid Handle

16-5

Handles in Logical Expressions
In this section...
“If Handle Is Valid” on page 16-6
“If Result Is Empty” on page 16-6
“If Handles Are Equal” on page 16-7

Handle objects do not evaluate to logical true or false. You must use the function that
tests for the state of interest and returns a logical value.

If Handle Is Valid
Use isgraphics to determine if a variable contains a valid graphics object handle. For
example, suppose hobj is a variable in the workspace. Before operating on this variable,
test its validity:

if isgraphics(hobj)
 ...
end

You can also determine the type of object:

if isgraphics(hobj,'figure')
 ...% hobj is a figure handle
end

If Result Is Empty
You cannot use empty objects directly in logical statements. Use isempty to return a
logical value that you can use in logical statements.

Some properties contain the handle to other objects. In cases where the other object does
not exist, the property contains an empty object:

close all
hRoot = groot;
hRoot.CurrentFigure

ans =

0x0 empty GraphicsPlaceholder array.

16 Working with Graphics Objects

16-6

For example, to determine if there is a current figure by querying the root
CurrentFigure property, use the isempty function:

hRoot = groot;
if ~isempty(hRoot.CurrentFigure)
 ... % There is a current figure
end

Another case where code can encounter an empty object is when searching for handles.
For example, suppose you set a figure’s Tag property to the character vector
'myFigure' and you use findobj to get the handle of this figure:

if isempty(findobj('Tag','myFigure'))
 ... % That figure was NOT found
end

findobj returns an empty object if there is no match.

If Handles Are Equal
There are two states of being equal for handles:

• Any two handles refer to the same object (test with ==).
• The objects referred to by any two handles are the same class, and all properties have

the same values (test with isequal).

Suppose you want to determine if h is a handle to a particular figure that has a value of
myFigure for its Tag property:

if h == findobj('Tag','myFigure')
 ...% h is correct figure
end

If you want to determine if different objects are in the same state, use isequal:

hLine1 = line;
hLine2 = line;
isequal(hLine1,hLine2)

ans =

 1

 Handles in Logical Expressions

16-7

Graphics Arrays
Graphics arrays can contain the handles of any graphics objects. For example, this call to
the plot function returns an array containing five line object handles:

y = rand(20,5);
h = plot(y)

h =

 5x1 Line array:

 Line
 Line
 Line
 Line
 Line

This array contains only handles to line objects. However, graphics arrays can contain
more than one type of graphics object. That is, graphics arrays can be heterogeneous.

For example, you can concatenate the handles of the figure, axes, and line objects into
one array, harray:

hf = figure;
ha = axes;
hl = plot(1:10);
harray = [hf,ha,hl]

harray =

 1x3 graphics array:

 Figure Axes Line

Graphics arrays follow the same rules as any MATLAB array. For example, array element
dimensions must agree. In this code, plot returns a 5-by-1 Line array:

hf = figure;
ha = axes;
hl = plot(rand(5));
harray = [hf,ha,hl];
Error using horzcat
Dimensions of matrices being concatenated are not consistent.

16 Working with Graphics Objects

16-8

To form an array, you must transpose hl:

harray = [hf,ha,hl']

harray =

 1x7 graphics array:

 Figure Axes Line Line Line Line Line

You cannot concatenate numeric data with object handles, with the exception of the
unique identifier specified by the figure Number property. For example, if there is an
existing figure with its Number property set to 1, you can refer to that figure by this
number:

figure(1)
aHandle = axes;
[aHandle,1]

ans =

 1x2 graphics array:

 Axes Figure

The same rules for array formation apply to indexed assignment. For example, you can
build a handle array with a for loop:

harray = gobjects(1,7);
hf = figure;
ha = axes;
hl = plot(rand(5));
harray(1) = hf;
harray(2) = ha;
for k = 1:length(hl)
 harray(k+2) = hl(k);
end

 Graphics Arrays

16-9

Object Identification

• “Special Object Identifiers” on page 17-2
• “Find Objects” on page 17-5
• “Copy Objects” on page 17-11
• “Delete Graphics Objects” on page 17-14

17

Special Object Identifiers

In this section...
“Getting Handles to Special Objects” on page 17-2
“The Current Figure, Axes, and Object” on page 17-2
“Callback Object and Callback Figure” on page 17-4

Getting Handles to Special Objects
MATLAB provides functions that return important object handles so that you can obtain
these handles whenever you require them.

These objects include:

• Current figure — Handle of the figure that is the current target for graphics
commands.

• Current axes— Handle of the axes in the current figure that is the target for graphics
commands.

• Current object — Handle of the object that is selected
• Callback object — Handle of the object whose callback is executing.
• Callback figure — Handle of figure that is the parent of the callback object.

The Current Figure, Axes, and Object
An important concept in MATLAB graphics is that of being the current object. Being
current means that object is the target for any action that affects objects of that type.
There are three objects designated as current at any point in time:

• The current figure is the window designated to receive graphics output.
• The current axes is the axes in which plotting functions display graphs.
• The current object is the most recent object created or selected.

MATLAB stores the three handles corresponding to these objects in the ancestor's
corresponding property.

17 Object Identification

17-2

Root
Current Figure

Current Axes

Current Object

CurrentFigure CurrentAxes

CurrentObject

These properties enable you to obtain the handles of these key objects:

hRoot = groot;
hFigure = hRoot.CurrentFigure;
hAxes = hFigure.CurrentAxes;
hobj = hFigure.CurrentObject;

Convenience Functions

The following commands are shorthand notation for the property queries.

• gcf — Returns the value of the root CurrentFigure property or creates a figure if
there is no current figure. A figure with its HandleVisibility property set to off
cannot become the current figure.

• gca — Returns the value of the current figure's CurrentAxes property or creates an
axes if there is no current axes. An axes with its HandleVisibility property set to
off cannot become the current axes.

• gco — Returns the value of the current figure's CurrentObject property.

Use these commands as input arguments to functions that require object handles. For
example, you can click a line object and then use gco to specify the handle to the set
command,

set(gco,'Marker','square')

or click in an axes object to set an axes property:

set(gca,'Color','black')

You can get the handles of all the graphic objects in the current axes (except hidden
handles):

h = get(gca,'Children');

 Special Object Identifiers

17-3

and then determine the types of the objects:

get(h,'Type')

ans =
 'text'
 'patch'
 'surface'
 'line'

Although gcf and gca provide a simple means of obtaining the current figure and axes
handles, they are less useful in code files. Especially true if your code is part of an
application layered on MATLAB where you do not know the user actions that can change
these values.

For information on how to prevent users from accessing the handles of graphics objects
that you want to protect, see “Prevent Access to Figures and Axes” on page 10-14.

Callback Object and Callback Figure
Callback functions often require information about the object that defines the callback or
the figure that contains the objects whose callback is executing. To obtain handles, these
objects, use these convenience functions:

• gcbo — Returns the value of the Root CallbackObject property. This property
contains the handle of the object whose callback is executing. gcbo optionally returns
the handle of the figure containing the callback object.

• gcbf — Returns the handle of the figure containing the callback object.

MATLAB keeps the value of the CallbackObject property in sync with the currently
executing callback. If one callback interrupts an executing callback, MATLAB updates the
value of CallbackObject property.

When writing callback functions for the CreateFcn and DeleteFcn, always use gcbo to
reference the callback object.

For more information on writing callback functions, see “Callback Definition” on page 12-
4

17 Object Identification

17-4

Find Objects

In this section...
“Find Objects with Specific Property Values” on page 17-5
“Find Text by String Property” on page 17-5
“Use Regular Expressions with findobj” on page 17-7
“Limit Scope of Search” on page 17-9

Find Objects with Specific Property Values
The findobj function can scan the object hierarchy to obtain the handles of objects that
have specific property values.

For identification, all graphics objects have a Tag property that you can set to any
character vector. You can then search for the specific property/value pair. For example,
suppose that you create a check box that is sometimes inactivated in the UI. By assigning
a unique value for the Tag property, you can find that particular object:

uicontrol('Style','checkbox','Tag','save option')

Use findobj to locate the object whose Tag property is set to 'save option' and
disable it:

hCheckbox = findobj('Tag','save option');
hCheckbox.Enable = 'off'

If you do not specify a starting object, findobj searches from the root object, finding all
occurrences of the property name/property value combination that you specify.

To find objects with hidden handles, use findall.

Find Text by String Property
This example shows how to find text objects using the String property.

The following graph contains text objects labeling particular values of the function.

 Find Objects

17-5

Suppose that you want to move the text labeling the value sin(t) = .707 from its current
location at [pi/4,sin(pi/4)] to the point [3*pi/4,sin(3*pi/4)] where the
function has the same value (shown in light gray out in the graph).

Determine the handle of the text object labeling the point [pi/4,sin(pi/4)] and
change its Position property.

To use findobj, pick a property value that uniquely identifies the object. This example
uses the text String property:

hText = findobj('String','\leftarrowsin(t) = .707');

Move the object to the new position, defining the text Position in axes units.

17 Object Identification

17-6

hText.Position = [3*pi/4,sin(3*pi/4),0];

findobj lets you restrict the search by specifying a starting point in the hierarchy,
instead of beginning with the root object. If there are many objects in the object tree, this
capability results in faster searches. In the previous example, you know that the text
object of interest is in the current axes, so you can type:

hText = findobj(gca,'String','\leftarrowsin(t) = .707');

Use Regular Expressions with findobj
This example shows how to find object handles using regular expressions to identify
specific property values. For more information about regular expressions, see regexp.

Suppose that you create the following graph and want to modify certain properties of the
objects created.

x = 0:30;
y = [1.5*cos(x);4*exp(-.1*x).*cos(x);exp(.05*x).*cos(x)]';
h = stem(x,y);
h(1).Marker = 'o';
h(1).Tag = 'Decaying Exponential';
h(2).Marker = 'square';
h(2).Tag = 'Growing Exponential';
h(3).Marker = '*';
h(3).Tag = 'Steady State';

 Find Objects

17-7

Passing a regular expression to findobj enables you to match specific patterns. For
example, suppose that you want to set the value of the MarkerFaceColor property to
green on all stem objects that do not have their Tag property set to 'Steady State'
(that is, stems that represent decaying and growing exponentials).

hStems = findobj('-regexp','Tag','^(?!Steady State$).');
for k = 1:length(hStems)
 hStems(k).MarkerFaceColor = 'green'
end

17 Object Identification

17-8

Limit Scope of Search
Specify the starting point in the object tree to limit the scope of the search. The starting
point can be the handle of a figure, axes, or a group of object handles.

For example, suppose that you want to change the marker face color of the stems in a
specific axes:

x = 0:30;
y = [1.5*cos(x);4*exp(-.1*x).*cos(x);exp(.05*x).*cos(x)]';
ax(1) = subplot(3,1,1);
stem(x,y(:,1))
ax(2) = subplot(3,1,2);
stem(x,y(:,2))
ax(3) = subplot(3,1,3);
stem(x,y(:,3))

Set the marker face color of the stems in the third axes only.

h = findobj(ax(3),'Type','stem');
h.MarkerFaceColor = 'red';

 Find Objects

17-9

For more information on limiting the scope and depth of an object search, see findobj
and findall.

17 Object Identification

17-10

Copy Objects

In this section...
“Copying Objects with copyobj” on page 17-11
“Copy Single Object to Multiple Destinations.” on page 17-11
“Copying Multiple Objects” on page 17-12

Copying Objects with copyobj
Copy objects from one parent to another using the copyobj function. The copy differs
from the original:

• The Parent property is now the new parent.
• The copied object’s handle is different from the original.
• copyobj does not copy the original object’s callback properties
• copyobj does not copy any application data associated with the original object.

Therefore, == and isequal return false when comparing original and new handles.

You can copy various objects to a new parent, or one object to several new parents, as
long as the result maintains the correct parent/child relationship. When you copy an
object having child objects, MATLAB copies all children too.

Note You cannot copy the same object more than once to the same parent in a single call
to copyobj.

Copy Single Object to Multiple Destinations.
When copying a single object to multiple destinations, the new handles returned by
copyobj are in the same order as the parent handles.

h = copyobj(cobj,[newParent1,newParent2,newParent3])

The returned array h contains the new object handles in the order shown:

 Copy Objects

17-11

 h(1) -> newParent1
 h(2) -> newParent2
 h(3) -> newParent3

Copying Multiple Objects
This example shows how to copy multiple objects to a single parent.

Suppose that you create a set of similar graphs and want to label the same data point on
each graph. You can copy the text and marker objects used to label the point in the first
graph to each subsequent graph.

Create and label the first graph:

x = 0:.1:2*pi;
plot(x,sin(x))
hText = text('String','\{5\pi\div4, sin(5\pi\div4)\}\rightarrow',...
 'Position',[5*pi/4,sin(5*pi/4),0],...
 'HorizontalAlignment','right');
hMarker = line(5*pi/4,sin(5*pi/4),0,'Marker','*');

Create two more graphs without labels:

figure
x = pi/4:.1:9*pi/4;
plot(x,sin(x))
hAxes1 = gca;

figure
x = pi/2:.1:5*pi/2;
plot(x,sin(x))
hAxes2 = gca;

Copy the text and marker (hText and hMarker) to each graph by parenting them to the
respective axes. Return the new handles for the text and marker copies:

newHandles1 = copyobj([hText,hMarker],hAxes1);
newHandles2 = copyobj([hText,hMarker],hAxes2);

Because the objective is to copy both objects to each axes, call copyobj twice, each time
with a single destination axes.

17 Object Identification

17-12

Copy Multiple Objects to Multiple Destinations

When you call copyobj with multiple objects to copy and multiple parent destinations,
copyobj copies respective objects to respective parents. That is, if h and p are handle
arrays of length n, then this call to copyobj:

copyobj(h,p)

results in an element-by-element copy:

h(1) -> p(1);
h(2) -> p(2);
...
h(n) -> p(n);

 Copy Objects

17-13

Delete Graphics Objects
In this section...
“How to Delete Graphics Objects” on page 17-14
“Handles to Deleted Objects” on page 17-15

How to Delete Graphics Objects
Remove graphics objects with the delete function. Pass the object handle as an
argument to delete. For example, delete the current axes, and all the objects contained
in the axes, with the statement.

delete(gca)

If you want to delete multiple objects, pass an array of handles to delete. For example, if
h1, h2, and h3 are handles to graphics objects that you want to delete, concatenate the
handles into a single array.

h = [h1,h2,h3];
delete(h)

Closing a figure deletes all the objects contained in the figure. For example, create a bar
graph.

f = figure;
y = rand(1,5);
bar(y)

The figure now contains axes and bar objects.

ax = f.Children;
b = ax.Children;

Close the figure:

close(f)

MATLAB deletes each object.

f

17 Object Identification

17-14

f =

 handle to deleted Figure

ax

ax =

 handle to deleted Axes

b

b =

 handle to deleted Bar

Handles to Deleted Objects
When you delete a graphics object, MATLAB does not delete the variable that contains
the object handle. However, the variable becomes an invalid handle because the object it
referred to no longer exists.

You can delete graphics objects explicitly using the delete function or by closing the
figure that contains the graphics objects. For example, create a bar graph.

f = figure;
y = rand(1,5);
b = bar(y);

Close the figure containing the bar graph.

close(f)

The handle variables still exist after closing the figure, but the graphics objects no longer
exist.

whos

 Name Size Bytes Class

 f 1x1 104 matlab.ui.Figure
 b 1x1 104 matlab.graphics.chart.primitive.Bar
 y 1x5 40 double

Use isgraphics to determine the validity of a graphics object handle.

 Delete Graphics Objects

17-15

isgraphics(b)

ans =

 0

You cannot access properties with the invalid handle variable.

h.FaceColor

Invalid or deleted object.

To remove the variable, use the clear function.

clear h

See Also
isvalid

Related Examples
• “Find Objects” on page 17-5

17 Object Identification

17-16

Optimize Performance of Graphics
Programs

• “Finding Code Bottlenecks” on page 18-2
• “What Affects Code Execution Speed” on page 18-4
• “Judicious Object Creation” on page 18-6
• “Avoid Repeated Searches for Objects” on page 18-8
• “Screen Updates” on page 18-10
• “Getting and Setting Properties” on page 18-12
• “Avoid Updating Static Data” on page 18-15
• “Transforming Objects Efficiently” on page 18-17
• “Use Low-Level Functions for Speed” on page 18-18
• “System Requirements for Graphics” on page 18-19
• “Resolving Low-Level Graphics Issues” on page 18-22

18

Finding Code Bottlenecks
Use the code profiler to determine which functions contribute the most time to execution
time. You can make performance improvements by reducing the execution times of your
algorithms and calculations wherever possible.

Once you have optimized your code, use the following techniques to reduce the overhead
of object creation and updating the display.

For example, suppose you are plotting 10-by-1000 element arrays using the myPlot
function:

function myPlot
 x = rand(10,1000);
 y = rand(10,1000);
 plot(x,y,'LineStyle','none','Marker','o','Color','b');
end

profile on
myPlot
profile viewer

When you profile this code, you see that most time is spent in the myPlot function:

Because the x and y arrays contain 1000 columns of data, the plot function creates 1000
line objects. In this case, you can achieve the same results by creating one line with
10000 data points:

function myPlot
 x = rand(10,1000);
 y = rand(10,1000);
 % Pass x and y as 1-by-1000 vectors
 plot(x(:),y(:),'LineStyle','none','Marker','o','Color','b');
end

profile on
myPlot
profile viewer

Object creation time is a major factor in this case:

18 Optimize Performance of Graphics Programs

18-2

You can often achieve improvements in execution speed by understanding how to avoid or
minimize inherently slow operations. For information on how to improve performance
using this tool, see the documentation for the profile function.

 Finding Code Bottlenecks

18-3

What Affects Code Execution Speed
In this section...
“Potential Bottlenecks” on page 18-4
“How to Improve Performance” on page 18-4

Potential Bottlenecks
Performance becomes an issue when working with large amounts of data and large
numbers of objects. In such cases, you can improve the execution speed of graphics code
by minimizing the effect of two factors that contribute to total execution time:

• Object creation — Adding new graphics objects to a scene.
• Screen updates — Updating the graphics model and sending changes to be rendered.

It is often possible to prevent these activities from dominating the total execution time of
a particular programming pattern. Think of execution time as being the sum of a number
of terms:

T execution time = T creating objects + T updating + (T calculations, etc)

The examples that follow show ways to minimize the time spent in object creation and
updating the screen. In the preceding expression, the execution time does not include
time spent in the actual rendering of the screen.

How to Improve Performance
Profile your code and optimize algorithms, calculation, and other bottlenecks that are
specific to your application. Then determine if the code is taking more time in object
creation functions or drawnow (updating). You can begin to optimize both operations,
beginning with the larger term in the total time equation.

Is your code:

• Creating new objects instead of updating existing objects? See “Judicious Object
Creation” on page 18-6.

• Updating an object that has some percentage of static data? See “Avoid Updating
Static Data” on page 18-15.

18 Optimize Performance of Graphics Programs

18-4

• Searching for object handles. See “Avoid Repeated Searches for Objects” on page 18-
8.

• Rotating, translating, or scaling objects? See “Transforming Objects Efficiently” on
page 18-17.

• Querying and setting properties in the same loop? See “Getting and Setting
Properties” on page 18-12.

 What Affects Code Execution Speed

18-5

Judicious Object Creation
In this section...
“Object Overhead” on page 18-6
“Do Not Create Unnecessary Objects” on page 18-6
“Use NaNs to Simulate Multiple Lines” on page 18-7
“Modify Data Instead of Creating New Objects” on page 18-7

Object Overhead
Graphics objects are complex structures that store information (data and object
characteristics), listen for certain events to occur (callback properties), and can cause
changes to other objects to accommodate their existence (update to axes limits, and so
on). Therefore, creating an object consumes resources.

When performance becomes an important consideration, try to realize your objectives in a
way that consumes a minimum amount of resources.

You can often improve performance by following these guidelines:

• Do not create unnecessary objects
• Avoid searching the object hierarchy

Do Not Create Unnecessary Objects
Look for cases where you can create fewer objects and achieve the same results. For
example, suppose you want to plot a 10-by-1000 array of points showing only markers.

This code creates 1000 line objects:

x = rand(10,1000);
y = rand(10,1000);
plot(x,y,'LineStyle','none','Marker','.','Color','b');

Convert the data from 10-by-1000 to 10000-by-1. This code creates a graph that looks the
same, but creates only one object:

plot(x(:),y(:),'LineStyle','none','Marker','.','Color','b')

18 Optimize Performance of Graphics Programs

18-6

Use NaNs to Simulate Multiple Lines
If coordinate data contains NaNs, MATLAB does not render those points. You can add
NaNs to vertex data to create line segments that look like separate lines. Place the NaNs
at the same element locations in each vector of data. For example, this code appears to
create three separate lines:

x = [0:10,NaN,20:30,NaN,40:50];
y = [0:10,NaN,0:10,NaN,0:10];
line(x,y)

Modify Data Instead of Creating New Objects
To view different data on what is basically the same graph, it is more efficient to update
the data of the existing objects (lines, text, etc.) rather than recreating the entire graph.

For example, suppose you want to visualize the effect on your data of varying certain
parameters.

1 Set the limits of any axis that can be determined in advance, or set the axis limits
modes to manual.

2 Recalculate the data using the new parameters.
3 Use the new data to update the data properties of the lines, text, etc. objects used in

the graph.
4 Call drawnow to update the figure (and all child objects in the figure).

For example, suppose you want to update a graph as data changes:

figure
z = peaks;
h = surf(z);
drawnow
zlim([min(z(:)), max(z(:))]);
for k = 1:50
 h.ZData = (0.01+sin(2*pi*k/20)*z);
 drawnow
end

 Judicious Object Creation

18-7

Avoid Repeated Searches for Objects
When you search for handles, MATLAB must search the object hierarchy to find matching
handles, which is time-consuming. Saving handles that you need to access later is a faster
approach. Array indexing is generally faster than using findobj or findall.

This code creates 500 line objects and then calls findobj in a loop.

figure
ax = axes;
for ix=1:500
 line(rand(1,5),rand(1,5),'Tag',num2str(ix),'Parent',ax);
end
drawnow;
for ix=1:500
 h = findobj(ax,'Tag',num2str(ix));
 set(h,'Color',rand(1,3));
end
drawnow;

A better approach is to save the handles in an array and index into the array in the second
for loop.

figure
ax = axes;
h = gobjects(1,500);
for ix = 1:500
 h(ix) = line(rand(1,5),rand(1,5),'Tag',num2str(ix),'Parent',ax);
end
drawnow;
% Index into handle array
for ix=1:500
 set(h(ix),'Color',rand(1,3));
end
drawnow

Limit Scope of Search
If searching for handles is necessary, limit the number of objects to be searched by
specifying a starting point in the object tree. For example, specify the starting point as
the figure or axes containing the objects for which you are searching.

18 Optimize Performance of Graphics Programs

18-8

Another way to limit the time expended searching for objects is to restrict the depth of
the search. For example, a 'flat' search restricts the search to the objects in a specific
handle array.

Use the findobj and findall functions to search for handles.

For more information, see “Find Objects” on page 17-5

 Avoid Repeated Searches for Objects

18-9

Screen Updates

In this section...
“MATLAB Graphics System” on page 18-10
“Managing Updates” on page 18-11

MATLAB Graphics System
MATLAB graphics is implemented using multiple threads of execution. The following
diagram illustrates how the main and renderer threads interact during the update
process. The MATLAB side contains the graphics model, which describes the geometry
rendered by the graphics hardware. The renderer side has a copy of the geometry in its
own memory system. The graphics hardware can render the screen without blocking
MATLAB execution.

When the graphics model changes, these updates must be passed to the graphics
hardware. Sending updates can be a bottleneck because the graphics hardware does not

18 Optimize Performance of Graphics Programs

18-10

support all MATLAB data types. The update process must convert the data into the
correct form.

When geometry is in the graphics hardware memory, you can realize performance
advantages by using this data and minimizing the data sent in an update.

Managing Updates
Updates involve these steps:

• Collecting changes that require an update to the screen, such as property changes and
objects added.

• Updating dependencies within the graphics model.
• Sending these updates to the renderer.
• Waiting for the renderer to accept these updates before returning execution to

MATLAB.

You initiate an update by calling the drawnow function. drawnow completes execution
when the renderer accepts the updates, which can happen before the renderer completes
updating the screen.

Explicit Updates

During function execution, adding graphics objects to a figure or changing properties of
existing objects does not necessarily cause an immediate update of the screen. The
update process occurs when there are changes to graphics that need to be updated, and
the code:

• Calls drawnow, pause, figure, or other functions that effectively cause an update
(see drawnow).

• Queries a property whose value depends on other properties (see “Automatically
Calculated Properties” on page 18-12).

• Completes execution and returns control to the MATLAB prompt or debugger.

 Screen Updates

18-11

Getting and Setting Properties

In this section...
“Automatically Calculated Properties” on page 18-12
“Inefficient Cycles of Sets and Gets” on page 18-13
“Changing Text Extent to Rotate Labels” on page 18-14

Automatically Calculated Properties
Certain properties have dependencies on the value of other properties. MATLAB
automatically calculates the values of these properties and updates their values based on
the current graphics model. For example, axis limits affect the values used for axis ticks,
which, in turn, affect the axis tick labels.

When you query a calculated property, MATLAB performs an implicit drawnow to ensure
all property values are up to date before returning the property value. The query causes a
full update of all dependent properties and an update of the screen.

MATLAB calculates the values of certain properties based on other values on which that
property depends. For example, plotting functions automatically create an axes with axis
limits, tick labels, and a size appropriate for the plotted data and the figure size.

MATLAB graphics performs a full update, if necessary, before returning a value from a
calculated property to ensure the returned value is up to date.

Object Automatically Calculated Properties
Axes CameraPosition, CameraTarget, CameraUpVector,

CameraViewAngle
 Position, OuterPosition, TightInset
 XLim, YLim, ZLim
 XTick, YTick, ZTick, XMinorTick, YMinorTick, ZMinorTick
 XTickLabel, YTickLabel, ZTickLabel, TickDir
 SortMethod
Text Extent

18 Optimize Performance of Graphics Programs

18-12

Inefficient Cycles of Sets and Gets
When you set property values, you change the state of the graphics model and mark it as
needing to be updated. When you query an autocalculated property, MATLAB needs to
perform an update if the graphics model and graphics hardware are not in sync.

When you get and set properties in the same loop, you can create a situation where
updates are performed with every pass through the loop.

• The get causes an update.
• The set marks the graphics model as needing an update.

The cycle is repeated with each pass through the loop. It is better to execute all property
queries in one loop, then execute all property sets in another loop, as shown in the
following example.

This example gets and sets the text Extent property.

Code with Poor Performance Code with Better Performance
h = gobjects(1,500);
p = zeros(500,3);
for ix = 1:500
 h(ix) = text(ix/500,ix/500,num2str(ix));
end
drawnow

% Gets and sets in the same loop,
% prompting a full update at each pass
for ix = 1:500
 pos = get(h(ix),'Position');
 ext = get(h(ix),'Extent');
 p(ix,:) = [pos(1)+(ext(3)+ext(1)), ...
 pos(2)+ext(2)+ext(4),0];
 set(h(ix),'Position',p(ix,:))
end
drawnow

h = gobjects(1,500);
p = zeros(500,3);
for ix = 1:500
 h(ix) = text(ix/500,ix/500,num2str(ix));
end
drawnow

% Get and save property values
for ix=1:500
 pos = get(h(ix),'Position');
 ext = get(h(ix),'Extent');
 p(ix,:) = [pos(1)+(ext(3)+ext(1)), ...
 pos(2)+ext(2)+ext(4),0];
end

% Set the property values and
% call a drawnow after the loop
for ix=1:500
 set(h(ix),'Position',p(ix,:));
end
drawnow

 Getting and Setting Properties

18-13

Code with Poor Performance Code with Better Performance
This code performs poorly because:

• The Extent property depends on other
values, such as screen resolution, figure size,
and axis limits, so querying this property can
cause a full update.

• Each set of the Position property makes a
full update necessary when the next get of
the Extent property occurs.

The performance is better because this code:

• Queries all property values in one loop and
stores these values in an array.

• Sets all property values in a separate loop.
• Calls drawnow after the second loop finishes.

Changing Text Extent to Rotate Labels
In cases where you change the text Extent property to rotate axes labels, it is more
efficient to use the axes properties XTickLabelRotation, YTickLabelRotation, and
ZTickLabelRotation.

18 Optimize Performance of Graphics Programs

18-14

Avoid Updating Static Data
If only a small portion of the data defining a graphics scene changes with each update of
the screen, you can improve performance by updating only the data that changes. The
following example illustrates this technique.

Code with Poor Performance Code with Better Performance
In this example, a marker moves along the
surface by creating both objects with each pass
through the loop.
[sx,sy,sz] = peaks(500);
nframes = 490;

for t = 1:nframes
 surf(sx,sy,sz,'EdgeColor','none')
 hold on
 plot3(sx(t+10,t),sy(t,t+10),...
 sz(t+10,t+10)+0.5,'o',...
 'MarkerFaceColor','red',...
 'MarkerSize',14)
 hold off
 drawnow
end

Create the surface, then update the XData,
YData, and ZData of the marker in the loop.
Only the marker data changes in each iteration.
[sx,sy,sz] = peaks(500);
nframes = 490;

surf(sx,sy,sz,'EdgeColor','none')
hold on
h = plot3(sx(1,1),sy(1,1),sz(1,1),'o',...
 'MarkerFaceColor','red',...
 'MarkerSize',14);
hold off

for t = 1:nframes
 set(h,'XData',sx(t+10,t),...
 'YData',sy(t,t+10),...
 'ZData',sz(t+10,t+10)+0.5)
 drawnow
end

Segmenting Data to Reduce Update Times
Consider the case where an object’s data grows very large while code executes in a loop,
such as a line tracing a signal over time.

With each call to drawnow, the updates are passed to the renderer. The performance
decreases as the data arrays grow in size. If you are using this pattern, adopt the
segmentation approach described in the example on the right.

 Avoid Updating Static Data

18-15

Code with Poor Performance Code with Better Performance
% Grow data
figure('Position',[10,10,1500,400])
n = 5000;

h = stairs(1,1);
ax = gca;
ax.XLim = [1,n];
ax.YLim = [0,1];
ax.ZLim = [0,1];
ax.NextPlot = 'add';

xd = 1:n;
yd = rand(1,n);

tic
for ix = 1:n
 set(h,'XData',xd(1:ix),'YData',yd(1:ix));
 drawnow;
end
toc

% Segment data
figure('Position',[10,10,1500,400])
n = 5000;
seg_size = 500;
xd = 1:n;
yd = rand(1,n);

h = stairs(1,1);
ax = gca;
ax.XLim = [1,n];
ax.YLim = [0,1];
ax.ZLim = [0,1];
ax.NextPlot = 'add';

tic
start = 1;
for ix=1:n
 % Limit object size
 if (ix-start > seg_size)
 start = ix-1;
 h = stairs(1,1);
 end
 set(h,'XData',xd(start:ix),...
 'YData',yd(start:ix));
 % Update display in 50 point chunks
 if mod(ix,50) == 0
 drawnow;
 end
end
toc

The performance of this code is better because
the limiting factor is the amount of data sent
during updates.

18 Optimize Performance of Graphics Programs

18-16

Transforming Objects Efficiently
Moving objects, for example by rotation, requires transforming the data that defines the
objects. You can improve performance by taking advantage of the fact that graphics
hardware can apply transforms to the data. You can then avoid sending the transformed
data to the renderer. Instead, you send only the four-by-four transform matrix.

To realize the performance benefits of this approach, use the hgtransform function to
group the objects that you want to move.

The following examples define a sphere and rotate it using two techniques to compare
performance:

• The rotate function transforms the sphere’s data and sends the data to the renderer
thread with each call to drawnow.

• The hgtransform function sends the transform matrix for the same rotation to the
renderer thread.

Code with Poor Performance Code with Better Performance
When object data is large, the update bottleneck
becomes a limiting factor.
% Using rotate
figure
[x,y,z] = sphere(270);

s = surf(x,y,z,z,'EdgeColor','none');
axis vis3d
for ang = 1:360
 rotate(s,[1,1,1],1)
 drawnow
end

Using hgtransform applies the transform on
the renderer side of the bottleneck.
% Using hgtransform
figure
ax = axes;
[x,y,z] = sphere(270);

% Transform object contains the surface
grp = hgtransform('Parent',ax);
s = surf(ax,x,y,z,z,'Parent',grp,...
 'EdgeColor','none');

view(3)
grid on
axis vis3d

% Apply the transform
tic
for ang = linspace(0,2*pi,360)
 tm = makehgtform('axisrotate',[1,1,1],ang);
 grp.Matrix = tm;
 drawnow
end
toc

 Transforming Objects Efficiently

18-17

Use Low-Level Functions for Speed
The features that make plotting functions easy to use also consume computer resources.
If you want to maximize graphing performance, use low-level functions and disable
certain automatic features.

Low-level graphics functions (e.g., line vs. plot, surface vs. surf) perform fewer
operations and therefore are faster when you are creating many graphics objects.

The low-level graphics functions are line, patch, rectangle, surface, text, image,
axes, and light

18 Optimize Performance of Graphics Programs

18-18

System Requirements for Graphics
In this section...
“Minimum System Requirements” on page 18-19
“Recommended System Requirements” on page 18-19
“Upgrade Your Graphics Drivers” on page 18-20
“Graphics Features with OpenGL Requirements” on page 18-20

Minimum System Requirements
All systems support most of the common MATLAB graphics features.

Recommended System Requirements
For the best results with graphics, your system must have:

• At least 1 GB of GPU memory.
• Graphics hardware that supports a hardware-accelerated implementation of OpenGL

2.1 or later. Most graphics hardware released since 2006 has OpenGL 2.1 or later. If
you have an earlier version of OpenGL, most graphics features still work, but some
advanced graphics features are unavailable. For more information, see “Graphics
Features with OpenGL Requirements” on page 18-20. For the best performance,
OpenGL 3.3 or later is recommended.

• The latest versions of graphics drivers available from your computer manufacturer or
graphics hardware vendor.

For more information on determining your graphics hardware, see opengl.

Starting in R2015b, MATLAB is a DPI-aware application that takes advantage of your full
system resolution. MATLAB graphics look sharp and properly scaled on all systems,
including Macintosh systems connected to Apple Retina displays and high-DPI Windows
systems.

 System Requirements for Graphics

18-19

Upgrade Your Graphics Drivers
Graphics hardware vendors frequently provide updated graphics drivers that improve
hardware performance. To help ensure that your graphics hardware works with MATLAB,
upgrade your graphics drivers to the latest versions available.

• On Windows systems, check your computer manufacturer website for driver updates,
such as Lenovo®, HP®, or Dell®. If no updates are provided, then check your graphics
hardware vendor website, such as the AMD® website, NVIDIA® website, or Intel®
website.

• On Linux systems, use proprietary vendor drivers instead of open-source
replacements.

• On Mac OS X systems, the graphics drivers are part of the operating system. Use the
latest updates provided.

Graphics Features with OpenGL Requirements
Most graphics features work on all systems. However, support for some graphics features
depends on:

• Whether you are using hardware, basic hardware, or software OpenGL. By default,
MATLAB uses hardware OpenGL if your graphics hardware supports it. Basic
hardware and software OpenGL are alternate options that you can use to work around
low-level graphics issues. In some cases, MATLAB automatically switches to software
OpenGL. For more information, see opengl.

• The version of the OpenGL implementation, for example, OpenGL 2.1.

This table lists the graphics features with OpenGL requirements. For more information on
the features, see opengl.

Graphics
Feature

Hardware
OpenGL

Basic
Hardware
OpenGL

Software
OpenGL on
Windows
(Uses OpenGL
1.1)

Software
OpenGL on
Linux
(Uses OpenGL
2.1)

Graphics
Smoothing

Supported for
OpenGL 2.1 or
higher

Supported for
OpenGL 2.1 or
higher

Not supported Not supported

18 Optimize Performance of Graphics Programs

18-20

http://support.amd.com/en-us/download
http://www.nvidia.com/Download/index.aspx
http://www.intel.com/p/en_US/support/detect/graphics

Graphics
Feature

Hardware
OpenGL

Basic
Hardware
OpenGL

Software
OpenGL on
Windows
(Uses OpenGL
1.1)

Software
OpenGL on
Linux
(Uses OpenGL
2.1)

Depth Peel
Transparency

Supported for
OpenGL 2.1 or
higher

Disabled Not supported Supported

Align Vertex
Centers

Supported for
OpenGL 2.1 or
higher

Disabled Not supported Not supported

Hardware-
accelerated
markers

Supported for
OpenGL 4.0 or
higher

Disabled Not supported Not supported

See Also
Functions
opengl

More About
• “Resolving Low-Level Graphics Issues” on page 18-22

 See Also

18-21

Resolving Low-Level Graphics Issues
MATLAB can encounter low-level issues when creating graphics on your system. For
example, bar edges might be missing from bar charts, stems might be missing from stem
plots, or your graphics hardware might run out of memory. You can encounter these
issues while creating 2-D or 3-D charts, using a Simulink® model that contains scopes, or
using UIs from a MathWorks toolbox. These issues are often due to older graphics
hardware or outdated graphics drivers. To resolve them, try the options described here.

Upgrade Your Graphics Hardware Drivers
Graphics hardware vendors frequently provide updated graphics drivers that improve
hardware performance. To help ensure that your graphics hardware works with MATLAB,
upgrade your graphics drivers to the latest versions available.

• On Windows systems, check for driver updates on the website of your manufacturer,
such as Lenovo, HP, or Dell. If no updates are provided, then check the website of your
graphics hardware vendor, such as AMD , NVIDIA , or Intel .

• On Linux systems, use proprietary vendor drivers instead of open-source
replacements.

• On Macintosh systems, the graphics drivers are part of the operating system. Use the
latest updates provided.

Use graphics hardware that supports a hardware-accelerated implementation of OpenGL
2.1 or later. Most graphics hardware released since 2006 has OpenGL 2.1 or later. If you
have an earlier version of OpenGL, most graphics features still work, but some advanced
graphics features are unavailable. For the best performance, OpenGL 3.3 or later is
recommended. For more information on determining your graphics hardware, see
opengl.

Choose OpenGL Implementation for Your System
MATLAB renders graphics using either a hardware-accelerated, basic hardware-
accelerated, or software implementation of OpenGL. By default, MATLAB tries to use a
hardware-accelerated implementation if your graphics hardware supports it. You can
work around many graphics issues by switching to either a software implementation or a
basic hardware-accelerated implementation. These alternate implementations do not
support some advanced graphics features.

18 Optimize Performance of Graphics Programs

18-22

http://support.amd.com/en-us/download
http://www.nvidia.com/Download/index.aspx
http://www.intel.com/p/en_US/support/detect/graphics

In some cases, MATLAB automatically switches to a software OpenGL implementation:

• If you do not have graphics hardware or if your graphics hardware does not support
hardware OpenGL.

• If a previous MATLAB session crashed due to a graphics issue.
• If you are using a graphics driver with known issues, an older NVIDIA graphics driver,

or graphics virtualization. Update your graphics drivers to the latest versions
available.

• The availability of hardware OpenGL when using remote desktop on Windows systems
varies. If you try to use hardware OpenGLwhen it is not supported, MATLAB returns a
warning message and uses software OpenGL instead. It is possible that updating your
graphics drivers to the latest versions will enable support for hardware OpenGL.

To determine which implementation MATLAB is using, type opengl info at the
command prompt and check the Software and HardwareSupportLevel fields. For
more information, see opengl.

Specify OpenGL Implementation for Current Session

To specify the OpenGL implementation for the current session of MATLAB, use one of
these techniques.

• Software OpenGL — Start MATLAB from the command prompt on your system using
the command matlab -softwareopengl. This command works only Windows and
Linux systems. Macintosh systems do not support software OpenGL.

• Basic hardware-accelerated OpenGL — Type opengl hardwarebasic at the
MATLAB command prompt.

• Hardware-accelerated OpenGL — Type opengl hardware at the MATLAB command
prompt.

Specify OpenGL Implementation for Future Sessions

To set your preferences so that MATLAB always starts with the specified implementation
of OpenGL, use one of these techniques.

• Software OpenGL — Type opengl('save','software') at the MATLAB command
prompt. Then, restart MATLAB.

• Basic hardware-accelerated OpenGL — Type opengl('save','hardwarebasic')
at the MATLAB command prompt. Then, restart MATLAB.

 Resolving Low-Level Graphics Issues

18-23

• Hardware-accelerated OpenGL — Type opengl('save','hardware') at the
MATLAB command prompt. Then, restart MATLAB.

• Undo preference setting — Execute opengl('save','none') at the MATLAB
command line. Then, restart MATLAB.

Fix Out-of-Memory Issues
Graphics hardware with limited graphics memory can cause poor performance or lead to
out-of-memory issues. Improve performance and work around memory issues with these
changes:

• Use smaller figure windows.
• Turn off anti-aliasing by setting the GraphicsSmoothing property of the figure to

'off'.
• Do not use transparency.
• Use software OpenGL.

Contact Technical Support
If you cannot resolve the issues using the options described here, then you might have
encountered a bug in MATLAB. Contact MathWorks technical support and provide the
following information:

• Output of executing opengl info.
• Whether your code runs without error when using software OpenGL.
• Whether your code runs without error on a different computer. Provide the output of

opengl info for all computers you have tested your code on.
• Some error messages contain a link to a file with details about the graphics error you

encountered. If a link to this file is provided, include this file with your service request.

Create a Service Request at https://www.mathworks.com/support/contact_us.

See Also
opengl

18 Optimize Performance of Graphics Programs

18-24

https://www.mathworks.com/support/contact_us

More About
• “System Requirements for Graphics” on page 18-19

 See Also

18-25

set and get

19

Access Property Values
In this section...
“Object Properties and Dot Notation” on page 19-2
“Graphics Object Variables Are Handles” on page 19-4
“Listing Object Properties” on page 19-6
“Modify Properties with set and get” on page 19-6
“Multi Object/Property Operations” on page 19-7

Object Properties and Dot Notation
Graphing functions return the object or objects created by the function. For example:

h = plot(1:10);

h refers to the line drawn in the graph of the values 1 through 10.

Dot notation is a new syntax to access object properties starting in R2014b. This syntax
uses the object variable and the case-sensitive property name connected with a dot (.) to
form an object dot property name notation:

object.PropertyName

If the object variable is nonscalar, use indexing to refer to a single object:

object(n).PropertyName

Scalar Object Variable

If h is the line created by the plot function, the expression h.Color is the value of this
particular line’s Color property:

h.Color

ans =

 0 0.4470 0.7410

If you assign the color value to a variable:

19 set and get

19-2

c = h.Color;

The variable c is a double.

whos

 Name Size Bytes Class

 c 1x3 24 double
 h 1x1 112 matlab.graphics.chart.primitive.Line

You can change the value of this line’s Color property with an assignment statement:

h.Color = [0 0 1];

Use dot notation property references in expressions:

meanY = mean(h.YData);

Or to change the property value:

h.LineWidth = h.LineWidth + 0.5;

Reference other objects contained in properties with multiple dot references:

h.Annotation.LegendInformation.IconDisplayStyle

ans =

on

Set the properties of objects contained in properties:

ax = gca;
ax.Title.FontWeight = 'normal';

Nonscalar Object Variable

Graphics functions can return an array of objects. For example:

y = rand(5);
h = plot(y);
size(h)

ans =

 5 1

 Access Property Values

19-3

Access the line representing the first column in y using the array index:

h(1).LineStyle = '--';

Use the set function to set the LineStyle of all the lines in the array:

set(h,'LineStyle','--')

Appending Data to Property Values

With dot notation, you can use “end” indexing to append data to properties that contain
data arrays, such as line XData and YData. For example, this code updates the line
XData and YData together to grow the line. You must ensure the size of line’s x- and y-
data are the same before rendering with the call to drawnow or returning to the MATLAB
prompt.

h = plot(1:10);
for k = 1:5
 h.XData(end + 1) = h.XData(end) + k;
 h.YData(end + 1) = h.YData(end) + k;
 drawnow
end

Graphics Object Variables Are Handles
The object variables returned by graphics functions are handles. Handles are references
to the actual objects. Object variables that are handles behave in specific ways when
copied and when the object is deleted.

Copy Object Variable

For example, create a graph with one line:

h = plot(1:10);

Now copy the object variable to another variable and set a property value with the new
object variable:

h2 = h;
h2.Color = [1,0,0]

Assigning the object variable h to h2 creates a copy of the handle, but not the object
referred to by the variable. The value of the Color property accessed from variable h is
the same as that accessed from variable h2.

19 set and get

19-4

h.Color

ans =

 1 0 0

h and h2 refer to the same object. Copying a handle object variable does not copy the
object.

Delete Object Variables

There are now two object variables in the workspace that refer to the same line.

whos

 Name Size Bytes Class
 h 1x1 112 matlab.graphics.chart.primitive.Line
 h2 1x1 112 matlab.graphics.chart.primitive.Line

Now close the figure containing the line graph:

close gcf

The line object no longer exists, but the object variables that referred to the line do still
exist:

whos

 Name Size Bytes Class
 h 1x1 112 matlab.graphics.chart.primitive.Line
 h2 1x1 112 matlab.graphics.chart.primitive.Line

However, the object variables are no longer valid:

h.Color

Invalid or deleted object.

h2.Color = 'blue'

Invalid or deleted object.

To remove the invalid object variables, use clear:

clear h h2

 Access Property Values

19-5

Listing Object Properties
To see what properties an object contains, use the get function:

get(h)

MATLAB returns a list of the object properties and their current value:

 AlignVertexCenters: 'off'
 Annotation: [1x1 matlab.graphics.eventdata.Annotation]
 BeingDeleted: 'off'
 BusyAction: 'queue'
 ButtonDownFcn: ''
 Children: []
 Clipping: 'on'
 Color: [0 0.4470 0.7410]
...
 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
...

You can see the values for properties with an enumerated set of possible values using the
set function:

set(h,'LineStyle')

 '-'
 '--'
 ':'
 '-.'
 'none'

To display all settable properties including possible values for properties with an
enumerated set of values, use set with the object variable:

set(h)

Modify Properties with set and get
You can also access and modify properties using the set and get functions.

The basic syntax for setting the value of a property on an existing object is:

19 set and get

19-6

set(object,'PropertyName',NewPropertyValue)

To query the current value of a specific object property, use a statement of the form:

returned_value = get(object,'PropertyName');

Property names are always character vectors. You can use single quotes or a variable that
is a character vector. Property values depend on the particular property.

Multi Object/Property Operations
If the object argument is an array, MATLAB sets the specified value on all identified
objects. For example:

y = rand(5);
h = plot(y);

Set all the lines to red:

set(h,'Color','red')

To set the same properties on a number of objects, specify property names and property
values using a structure or cell array. For example, define a structure to set axes
properties appropriately to display a particular graph:

view1.CameraViewAngleMode = 'manual';
view1.DataAspectRatio = [1 1 1];
view1.Projection = 'Perspective';

To set these values on the current axes, type:

set(gca,view1)

Query Multiple Properties

You can define a cell array of property names and use it to obtain the values for those
properties. For example, suppose you want to query the values of the axes “camera mode”
properties. First, define the cell array:
camModes = {'CameraPositionMode','CameraTargetMode',...
'CameraUpVectorMode','CameraViewAngleMode'};

Use this cell array as an argument to obtain the current values of these properties:

get(gca,camModes)

 Access Property Values

19-7

ans =
 'auto' 'auto' 'auto' 'auto'

19 set and get

19-8

Using Axes Properties

• “Control Ratio of Axis Lengths and Data Unit Lengths” on page 20-2
• “Create Chart with Multiple x-Axes and y-Axes” on page 20-10
• “Display Text Outside Axes” on page 20-15
• “Line Styles Used for Plotting — LineStyleOrder” on page 20-18

20

Control Ratio of Axis Lengths and Data Unit Lengths
In this section...
“Plot Box Aspect Ratio” on page 20-2
“Data Aspect Ratio” on page 20-5
“Revert Back to Default Ratios” on page 20-8

You can control the relative lengths of the x-axis, y-axis, and z-axis (plot box aspect ratio).
You also can control the relative lengths of one data unit along each axis (data aspect
ratio).

Plot Box Aspect Ratio
The plot box aspect ratio is the relative lengths of the x-axis, y-axis, and z-axis. By default,
the plot box aspect ratio is based on the size of the figure. You can change the aspect
ratio using the pbaspect function. Set the ratio as a three-element vector of positive
values that represent the relative axis lengths.

For example, plot an elongated circle. Then set the plot box aspect ratio so that the x-axis
is twice the length of the y-axis and z-axis (not shown).

t = linspace(0,2*pi);
plot(sin(t),2*cos(t))
grid on
pbaspect([2 1 1])

20 Using Axes Properties

20-2

Show the axes in a 3-D view to see the z-axis.

view(3)

 Control Ratio of Axis Lengths and Data Unit Lengths

20-3

For square axes, use [1 1 1]. This value is similar to using the axis square command.

t = linspace(0,2*pi);
plot(sin(t),2*cos(t))
grid on
pbaspect([1 1 1])

20 Using Axes Properties

20-4

Data Aspect Ratio
The data aspect ratio is the relative length of the data units along the x-axis, y-axis, and z-
axis. You can change the aspect ratio using the daspect function. Set the ratio as a
three-element vector of positive values that represent the relative lengths of data units
along each axis.

For example, set the ratio so that the length from 0 to 1 along the x-axis is equal to the
length from 0 to 0.5 along the y-axis and 0 to 2 along the z-axis (not shown).

t = linspace(0,2*pi);
plot(sin(t),2*cos(t))

 Control Ratio of Axis Lengths and Data Unit Lengths

20-5

grid on
daspect([1 0.5 2])

Show the axes in a 3-D view to see the z-axis.

view(3)

20 Using Axes Properties

20-6

For equal data units in all directions, use [1 1 1]. This value is similar to using the axis
equal command. One data unit in the x direction is the same length as one data unit in
the y and z directions.

t = linspace(0,2*pi);
plot(sin(t),2*cos(t))
grid on
daspect([1 1 1])

 Control Ratio of Axis Lengths and Data Unit Lengths

20-7

Revert Back to Default Ratios
Change the data aspect ratio. Then revert back to the default plot box and data aspect
ratios using the axis normal command.

t = linspace(0,2*pi);
plot(sin(t),2*cos(t))
grid on
daspect([1 1 1])
axis normal

20 Using Axes Properties

20-8

See Also
Functions
axis | daspect | pbaspect

Related Examples
• “Specify Axis Limits” on page 2-19
• “Control Axes Layout” on page 9-2

 See Also

20-9

Create Chart with Multiple x-Axes and y-Axes
This example shows how to create a chart using the bottom and left sides of the axes for
the first plot and the top and right sides for the second plot.

Plot a red line using the line function. Set the color for the x-axis and y-axis lines to red.

Note: Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead, such as set(ax1,'XColor','r').

figure
x1 = 0:0.1:40;
y1 = 4.*cos(x1)./(x1+2);
line(x1,y1,'Color','r')
ax1 = gca; % current axes
ax1.XColor = 'r';
ax1.YColor = 'r';

20 Using Axes Properties

20-10

Create a second axes in the same location as the first axes by setting the position of the
second axes equal to the position of the first axes. Display the x-axis at the top of the axes
and the y-axis on the right side. Set the axes Color to 'none' so that the first axes is
visible underneath the second axes.

Note: Starting in R2014b, you can use dot notation to query properties. If you are using
an earlier release, use the get function instead, such as ax1_pos =
get(ax1,'Position').

ax1_pos = ax1.Position; % position of first axes
ax2 = axes('Position',ax1_pos,...
 'XAxisLocation','top',...
 'YAxisLocation','right',...
 'Color','none');

 Create Chart with Multiple x-Axes and y-Axes

20-11

Plot a line in the second axes. Set the line color to black so that it matches the color of the
corresponding x-axis and y-axis.

x2 = 1:0.2:20;
y2 = x2.^2./x2.^3;
line(x2,y2,'Parent',ax2,'Color','k')

20 Using Axes Properties

20-12

The chart contains two lines that correspond to different axes. The red line corresponds
to the red axes. The black line corresponds to the black axes.

See Also
Functions
axes | gca | line

 See Also

20-13

Related Examples
• “Create Chart with Two y-Axes” on page 2-54

20 Using Axes Properties

20-14

Display Text Outside Axes
This example shows how to display text outside an axes by creating a second axes for the
text. MATLAB® always displays text objects within an axes. If you want to place a text
description alongside an axes, then you must create another axes to position the text.

Create an invisible axes, ax1, that encompasses the entire figure window by specifying its
position as [0 0 1 1]. Then, create a smaller axes, ax2, to contain the actual plot.
Create a line plot in the smaller axes by specifying ax2 as an input argument to the plot
function.

fig = figure;
ax1 = axes('Position',[0 0 1 1],'Visible','off');
ax2 = axes('Position',[.3 .1 .6 .8]);

t = 0:1000;
y = 0.25*exp(-0.005*t);
plot(ax2,t,y)

 Display Text Outside Axes

20-15

Define the text. Use a cell array to create multiline text.

descr = {'Plot of the function:';
 'y = A{\ite}^{-\alpha{\itt}}';
 ' ';
 'With the values:';
 'A = 0.25';
 '\alpha = .005';
 't = 0:1000'};

Set the larger axes to be the current axes since the text function places text in the
current axes. Then, display the text.

20 Using Axes Properties

20-16

axes(ax1) % sets ax1 to current axes
text(.025,0.6,descr)

 Display Text Outside Axes

20-17

Line Styles Used for Plotting — LineStyleOrder
The axes LineStyleOrder property is analogous to the ColorOrder property. It
specifies the line styles to use for multiline plots created with the line-plotting functions.

Axes increments the line style only after using all of the colors in the ColorOrder
property. It then uses all the colors again with the second line style, and so on.

For example, define a default ColorOrder of red, green, and blue and a default
LineStyleOrder of solid, dashed, and dotted lines.

set(groot,'defaultAxesColorOrder',[1 0 0;0 1 0;0 0 1],...
 'defaultAxesLineStyleOrder','-|--|:')

Then plot some multiline data.

t = 0:pi/20:2*pi;
a = ones(length(t),9);
for i = 1:9
 a(:,i) = sin(t-i/5)';
end
plot(t,a)

20 Using Axes Properties

20-18

Plotting functions cycle through all colors for each line style.

The default values persist until you quit MATLAB. To remove default values during your
MATLAB session, use the reserved word remove.

set(groot,'defaultAxesLineStyleOrder','remove')
set(groot,'defaultAxesColorOrder','remove')

See “Default Property Values” on page 11-2 for more information.

 Line Styles Used for Plotting — LineStyleOrder

20-19

